1
|
Marion G, Hadley L, Isham V, Mollison D, Panovska-Griffiths J, Pellis L, Tomba GS, Scarabel F, Swallow B, Trapman P, Villela D. Modelling: Understanding pandemics and how to control them. Epidemics 2022; 39:100588. [PMID: 35679714 DOI: 10.1016/j.epidem.2022.100588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/22/2022] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
New disease challenges, societal demands and better or novel types of data, drive innovations in the structure, formulation and analysis of epidemic models. Innovations in modelling can lead to new insights into epidemic processes and better use of available data, yielding improved disease control and stimulating collection of better data and new data types. Here we identify key challenges for the structure, formulation, analysis and use of mathematical models of pathogen transmission relevant to current and future pandemics.
Collapse
Affiliation(s)
- Glenn Marion
- Biomathematics and Statistics Scotland, Edinburgh, UK; Scottish COVID-19 Response Consortium, UK.
| | - Liza Hadley
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, UK
| | - Valerie Isham
- Department of Statistical Science, University College London, UK
| | - Denis Mollison
- Department of Actuarial Mathematics and Statistics, Heriot-Watt University, UK
| | - Jasmina Panovska-Griffiths
- The Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK; The Queen's College, Oxford University, UK
| | - Lorenzo Pellis
- Department of Mathematics, University of Manchester, UK; The Alan Turing Institute, London, UK; Joint UNIversities Pandemic and Epidemiological Research, UK
| | | | - Francesca Scarabel
- Department of Mathematics, University of Manchester, UK; Joint UNIversities Pandemic and Epidemiological Research, UK; CDLab - Computational Dynamics Laboratory, Department of Mathematics, Computer Science and Physics, University of Udine, Italy
| | - Ben Swallow
- Scottish COVID-19 Response Consortium, UK; School of Mathematics and Statistics, University of Glasgow, UK
| | - Pieter Trapman
- Department of Mathematics, Stockholm University, Stockholm, Sweden
| | - Daniel Villela
- Program of Scientific Computing, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|