Boom-bust population dynamics increase diversity in evolving competitive communities.
Commun Biol 2021;
4:502. [PMID:
33893395 PMCID:
PMC8065032 DOI:
10.1038/s42003-021-02021-4]
[Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/24/2021] [Indexed: 11/24/2022] Open
Abstract
The processes and mechanisms underlying the origin and maintenance of biological diversity have long been of central importance in ecology and evolution. The competitive exclusion principle states that the number of coexisting species is limited by the number of resources, or by the species’ similarity in resource use. Natural systems such as the extreme diversity of unicellular life in the oceans provide counter examples. It is known that mathematical models incorporating population fluctuations can lead to violations of the exclusion principle. Here we use simple eco-evolutionary models to show that a certain type of population dynamics, boom-bust dynamics, can allow for the evolution of much larger amounts of diversity than would be expected with stable equilibrium dynamics. Boom-bust dynamics are characterized by long periods of almost exponential growth (boom) and a subsequent population crash due to competition (bust). When such ecological dynamics are incorporated into an evolutionary model that allows for adaptive diversification in continuous phenotype spaces, desynchronization of the boom-bust cycles of coexisting species can lead to the maintenance of high levels of diversity.
Michael Doebeli et al. introduce a discrete-time competition model with multi-dimensional evolving phenotypes to explore the effect of boom-bust population dynamics on the evolution of diversity. Their models show that long periods of near-exponential growth, followed by a population crash due to competition, can lead to the origin and maintenance of high levels of diversity in competitive communities.
Collapse