1
|
Zhu Y, Dai Y, Tian Y. The Peptide PROTAC Modality: A New Strategy for Drug Discovery. MedComm (Beijing) 2025; 6:e70133. [PMID: 40135198 PMCID: PMC11933449 DOI: 10.1002/mco2.70133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
In recent years, proteolysis targeting chimera (PROTAC) technology has made significant progress in the field of drug development. Traditional drugs mainly focus on inhibiting or activating specific proteins, while PROTAC technology provides new ideas for treating various diseases by inducing the degradation of target proteins. Especially for peptide PROTACs, due to their unique structural and functional characteristics, they have become a hot research topic. This review provides a detailed description of the key components, mechanisms, and design principles of peptide PROTACs, elaborates on their applications in skin-related diseases, oncology, and other potential therapeutic fields, analyzes their advantages and challenges, and looks forward to their future development prospects. The development of peptide PROTAC technology not only opens up new paths for drug research and development, but also provides new ideas for solving the resistance and safety issues faced by traditional small-molecule drugs. Compared with small-molecule PROTACs, peptide PROTACs have advantages such as multitargeting, biodegradability, low toxicity, and flexibility in structural design. With the deepening of research and the continuous maturity of technology, peptide PROTACs are expected to become one of the important strategies for future drug discovery, providing new hope for the treatment of more intractable diseases. Peptide PROTACs are ushering in a new era of precision medicine.
Collapse
Affiliation(s)
- Youmin Zhu
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
| | - Yu Dai
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
- School of BiotechnologyEast China University of Science and TechnologyShanghaiChina
| | - Yuncai Tian
- Shanghai AZ Science and Technology Co., Ltd.ShanghaiChina
| |
Collapse
|
2
|
Morrissey J, Barberi G, Strain B, Facco P, Kontoravdi C. NEXT-FBA: A hybrid stoichiometric/data-driven approach to improve intracellular flux predictions. Metab Eng 2025; 91:130-144. [PMID: 40118205 DOI: 10.1016/j.ymben.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Genome-scale metabolic models (GEMs) have been widely utilized to understand cellular metabolism. The application of GEMs has been advanced by computational methods that enable the prediction and analysis of intracellular metabolic states. However, the accuracy and biological relevance of these predictions often suffer from the many degrees of freedom and scarcity of available data to constrain the models adequately. Here, we introduce Neural-net EXtracellular Trained Flux Balance Analysis, (NEXT-FBA), a novel computational methodology that addresses these limitations by utilizing exometabolomic data to derive biologically relevant constraints for intracellular fluxes in GEMs. We achieve this by training artificial neural networks (ANNs) with exometabolomic data from Chinese hamster ovary (CHO) cells and correlating it with 13C-labeled intracellular fluxomic data. By capturing the underlying relationships between exometabolomics and cell metabolism, NEXT-FBA predicts upper and lower bounds for intracellular reaction fluxes to constrain GEMs. We demonstrate the efficacy of NEXT-FBA across several validation experiments, where it outperforms existing methods in predicting intracellular flux distributions that align closely with experimental observations. Furthermore, a case study demonstrates how NEXT-FBA can guide bioprocess optimization by identifying key metabolic shifts and refining flux predictions to yield actionable process and metabolic engineering targets. Overall, NEXT-FBA aims to improve the accuracy and biological relevance of intracellular flux predictions in metabolic modelling, with minimal input data requirements for pre-trained models.
Collapse
Affiliation(s)
- James Morrissey
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Gianmarco Barberi
- CAPE-Lab (Computer-Aided Process Engineering Laboratory), Department of Industrial Engineering, University of Padova, Padova, Italy
| | - Benjamin Strain
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Pierantonio Facco
- CAPE-Lab (Computer-Aided Process Engineering Laboratory), Department of Industrial Engineering, University of Padova, Padova, Italy.
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Xu T, Wang S, Ma T, Dong Y, Ashby CR, Hao GF. The identification of essential cellular genes is critical for validating drug targets. Drug Discov Today 2024; 29:104215. [PMID: 39428084 DOI: 10.1016/j.drudis.2024.104215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/06/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Accurately identifying biological targets is crucial for advancing treatment options. Essential genes, vital for cell or organism survival, hold promise as potential drug targets in disease treatment. Although many studies have sought to identify essential genes as therapeutic targets in medicine and bioinformatics, systematic reviews on their relationship with drug targets are relatively rare. This work presents a comprehensive analysis to aid in identifying essential genes as potential targets for drug discovery, encompassing their relevance, identification methods, successful case studies, and challenges. This work will facilitate the identification of essential genes as therapeutic targets, thereby boosting new drug development.
Collapse
Affiliation(s)
- Ting Xu
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Shuang Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Tingting Ma
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China
| | - Yawen Dong
- School of Pharmaceutical Sciences, Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang 550025, China.
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, New York, NY, USA.
| | - Ge-Fei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Sen P. Flux balance analysis of metabolic networks for efficient engineering of microbial cell factories. Biotechnol Genet Eng Rev 2024; 40:3682-3715. [PMID: 36476223 DOI: 10.1080/02648725.2022.2152631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/16/2022] [Indexed: 12/14/2022]
Abstract
Metabolic engineering principles have long been applied to explore the metabolic networks of complex microbial cell factories under a variety of environmental constraints for effective deployment of the microorganisms in the optimal production of biochemicals like biofuels, polymers, amino acids, recombinant proteins. One of the methodologies used for analyzing microbial metabolic networks is the Flux Balance Analysis (FBA), which employs applications of optimization techniques for forecasting biomass growth and metabolic flux distribution of industrially important products under specified environmental conditions. The in silico flux simulations are instrumental for designing the production-specific microbial cell factories. However, FBA has some inherent limitations. The present review emphasizes how the incorporation of additional kinetic, thermodynamic, expression and regulatory constraints and integration of omics data into the classical FBA platform improve the prediction accuracy of FBA. A programmed comparison of the simulated data with the experimental observations is presented for supporting the claim. The review further accounts for the successful implementation of classical FBA in biotechnological applications and identifies areas in which classical FBA fails to make correct predictions. The analysis of the predictive capabilities of the different FBA strategies presented here is expected to help researchers in finding new avenues in engineering highly efficient microbial metabolic pathways and identify the key metabolic bottlenecks during the process. Based on the appropriate metabolic network design, fermentation engineers will be able to effectively design the bioreactors and optimize large-scale biochemical production through suitable pathway modifications.
Collapse
Affiliation(s)
- Pramita Sen
- Department of Chemical Engineering, Heritage Institute of Technology Kolkata, Kolkata, India
| |
Collapse
|
5
|
Qian J, Ye C. Development and applications of genome-scale metabolic network models. ADVANCES IN APPLIED MICROBIOLOGY 2024; 126:1-26. [PMID: 38637105 DOI: 10.1016/bs.aambs.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The genome-scale metabolic network model is an effective tool for characterizing the gene-protein-response relationship in the entire metabolic pathway of an organism. By combining various algorithms, the genome-scale metabolic network model can effectively simulate the influence of a specific environment on the physiological state of cells, optimize the culture conditions of strains, and predict the targets of genetic modification to achieve targeted modification of strains. In this review, we summarize the whole process of model building, sort out the various tools that may be involved in the model building process, and explain the role of various algorithms in model analysis. In addition, we also summarized the application of GSMM in network characteristics, cell phenotypes, metabolic engineering, etc. Finally, we discuss the current challenges facing GSMM.
Collapse
Affiliation(s)
- Jinyi Qian
- Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing, PR China
| | - Chao Ye
- Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, PR China.
| |
Collapse
|
6
|
Aghakhani S, Silva-Saffar SE, Soliman S, Niarakis A. Hybrid computational modeling highlights reverse warburg effect in breast cancer-associated fibroblasts. Comput Struct Biotechnol J 2023; 21:4196-4206. [PMID: 37705596 PMCID: PMC10495551 DOI: 10.1016/j.csbj.2023.08.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are amongst the key players of the tumor microenvironment (TME) and are involved in cancer initiation, progression, and resistance to therapy. They exhibit aggressive phenotypes affecting extracellular matrix remodeling, angiogenesis, immune system modulation, tumor growth, and proliferation. CAFs phenotypic changes appear to be associated with metabolic alterations, notably a reverse Warburg effect that may drive fibroblasts transformation. However, its precise molecular mechanisms and regulatory drivers are still under investigation. Deciphering the reverse Warburg effect in breast CAFs may contribute to a better understanding of the interplay between TME and tumor cells, leading to new treatment strategies. In this regard, dynamic modeling approaches able to span multiple biological layers are essential to capture the emergent properties of various biological entities when complex and intertwined pathways are involved. This work presents the first hybrid large-scale computational model for breast CAFs covering major cellular signaling, gene regulation, and metabolic processes. It was generated by combining a cell- and disease-specific asynchronous Boolean model with a generic core metabolic network leveraging both data-driven and manual curation approaches. This model reproduces the experimentally observed reverse Warburg effect in breast CAFs and further identifies Hypoxia-Inducible Factor 1 (HIF-1) as its key molecular driver. Targeting HIF-1 as part of a TME-centered therapeutic strategy may prove beneficial in the treatment of breast cancer by addressing the reverse Warburg effect. Such findings in CAFs, in light of our previously published results in rheumatoid arthritis synovial fibroblasts, point to a common HIF-1-driven metabolic reprogramming of fibroblasts in breast cancer and rheumatoid arthritis.
Collapse
Affiliation(s)
- Sahar Aghakhani
- GenHotel – European Research Laboratory for Rheumatoid Arthritis, Univ. Evry, Univ. Paris-Saclay, Evry, France
- Lifeware Group, Inria Saclay Île-de-France, Palaiseau, France
| | - Sacha E Silva-Saffar
- GenHotel – European Research Laboratory for Rheumatoid Arthritis, Univ. Evry, Univ. Paris-Saclay, Evry, France
| | - Sylvain Soliman
- Lifeware Group, Inria Saclay Île-de-France, Palaiseau, France
| | - Anna Niarakis
- GenHotel – European Research Laboratory for Rheumatoid Arthritis, Univ. Evry, Univ. Paris-Saclay, Evry, France
- Lifeware Group, Inria Saclay Île-de-France, Palaiseau, France
| |
Collapse
|
7
|
Qiu S, Yang A, Zeng H. Flux balance analysis-based metabolic modeling of microbial secondary metabolism: Current status and outlook. PLoS Comput Biol 2023; 19:e1011391. [PMID: 37619239 PMCID: PMC10449171 DOI: 10.1371/journal.pcbi.1011391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023] Open
Abstract
In microorganisms, different from primary metabolism for cellular growth, secondary metabolism is for ecological interactions and stress responses and an important source of natural products widely used in various areas such as pharmaceutics and food additives. With advancements of sequencing technologies and bioinformatics tools, a large number of biosynthetic gene clusters of secondary metabolites have been discovered from microbial genomes. However, due to challenges from the difficulty of genome-scale pathway reconstruction and the limitation of conventional flux balance analysis (FBA) on secondary metabolism, the quantitative modeling of secondary metabolism is poorly established, in contrast to that of primary metabolism. This review first discusses current efforts on the reconstruction of secondary metabolic pathways in genome-scale metabolic models (GSMMs), as well as related FBA-based modeling techniques. Additionally, potential extensions of FBA are suggested to improve the prediction accuracy of secondary metabolite production. As this review posits, biosynthetic pathway reconstruction for various secondary metabolites will become automated and a modeling framework capturing secondary metabolism onset will enhance the predictive power. Expectedly, an improved FBA-based modeling workflow will facilitate quantitative study of secondary metabolism and in silico design of engineering strategies for natural product production.
Collapse
Affiliation(s)
- Sizhe Qiu
- School of Food and Health, Beijing Technology and Business University, Bejing, China
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Hong Zeng
- School of Food and Health, Beijing Technology and Business University, Bejing, China
| |
Collapse
|
8
|
Thuillier K, Baroukh C, Bockmayr A, Cottret L, Paulevé L, Siegel A. MERRIN: MEtabolic regulation rule INference from time series data. Bioinformatics 2022; 38:ii127-ii133. [PMID: 36124795 DOI: 10.1093/bioinformatics/btac479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Many techniques have been developed to infer Boolean regulations from a prior knowledge network (PKN) and experimental data. Existing methods are able to reverse-engineer Boolean regulations for transcriptional and signaling networks, but they fail to infer regulations that control metabolic networks. RESULTS We present a novel approach to infer Boolean rules for metabolic regulation from time-series data and a PKN. Our method is based on a combination of answer set programming and linear programming. By solving both combinatorial and linear arithmetic constraints, we generate candidate Boolean regulations that can reproduce the given data when coupled to the metabolic network. We evaluate our approach on a core regulated metabolic network and show how the quality of the predictions depends on the available kinetic, fluxomics or transcriptomics time-series data. AVAILABILITY AND IMPLEMENTATION Software available at https://github.com/bioasp/merrin. SUPPLEMENTARY INFORMATION Supplementary data are available at https://doi.org/10.5281/zenodo.6670164.
Collapse
Affiliation(s)
- Kerian Thuillier
- INRIA, CNRS, IRISA, University of Rennes, Rennes F-35000, France
| | - Caroline Baroukh
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan F-31326, France
| | - Alexander Bockmayr
- Institute of Mathematics, Freie Universität Berlin, Berlin D-14195, Germany
| | - Ludovic Cottret
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan F-31326, France
| | - Loïc Paulevé
- Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France
| | - Anne Siegel
- INRIA, CNRS, IRISA, University of Rennes, Rennes F-35000, France
| |
Collapse
|
9
|
Köbis MA, Bockmayr A, Steuer R. Time-Optimal Adaptation in Metabolic Network Models. Front Mol Biosci 2022; 9:866676. [PMID: 35911956 PMCID: PMC9329932 DOI: 10.3389/fmolb.2022.866676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022] Open
Abstract
Analysis of metabolic models using constraint-based optimization has emerged as an important computational technique to elucidate and eventually predict cellular metabolism and growth. In this work, we introduce time-optimal adaptation (TOA), a new constraint-based modeling approach that allows us to evaluate the fastest possible adaptation to a pre-defined cellular state while fulfilling a given set of dynamic and static constraints. TOA falls into the mathematical problem class of time-optimal control problems, and, in its general form, can be broadly applied and thereby extends most existing constraint-based modeling frameworks. Specifically, we introduce a general mathematical framework that captures many existing constraint-based methods and define TOA within this framework. We then exemplify TOA using a coarse-grained self-replicator model and demonstrate that TOA allows us to explain several well-known experimental phenomena that are difficult to explore using existing constraint-based analysis methods. We show that TOA predicts accumulation of storage compounds in constant environments, as well as overshoot uptake metabolism after periods of nutrient scarcity. TOA shows that organisms with internal temporal degrees of freedom, such as storage, can in most environments outperform organisms with a static intracellular composition. Furthermore, TOA reveals that organisms adapted to better growth conditions than present in the environment (“optimists”) typically outperform organisms adapted to poorer growth conditions (“pessimists”).
Collapse
Affiliation(s)
- Markus A. Köbis
- Research Group Dynamical Systems and Numerical Analysis, Department of Mathematics, Norwegian University of Science and Technology, Trondheim, Norway
- *Correspondence: Markus A. Köbis, ; Ralf Steuer,
| | - Alexander Bockmayr
- Mathematics in Life Science Group, Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Ralf Steuer
- Humboldt-University of Berlin, Institute for Biology, Institute for Theoretical Biology (ITB), Berlin, Germany
- *Correspondence: Markus A. Köbis, ; Ralf Steuer,
| |
Collapse
|
10
|
Hartmann FSF, Udugama IA, Seibold GM, Sugiyama H, Gernaey KV. Digital models in biotechnology: Towards multi-scale integration and implementation. Biotechnol Adv 2022; 60:108015. [PMID: 35781047 DOI: 10.1016/j.biotechadv.2022.108015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/03/2022] [Accepted: 06/27/2022] [Indexed: 12/28/2022]
Abstract
Industrial biotechnology encompasses a large area of multi-scale and multi-disciplinary research activities. With the recent megatrend of digitalization sweeping across all industries, there is an increased focus in the biotechnology industry on developing, integrating and applying digital models to improve all aspects of industrial biotechnology. Given the rapid development of this field, we systematically classify the state-of-art modelling concepts applied at different scales in industrial biotechnology and critically discuss their current usage, advantages and limitations. Further, we critically analyzed current strategies to couple cell models with computational fluid dynamics to study the performance of industrial microorganisms in large-scale bioprocesses, which is of crucial importance for the bio-based production industries. One of the most challenging aspects in this context is gathering intracellular data under industrially relevant conditions. Towards comprehensive models, we discuss how different scale-down concepts combined with appropriate analytical tools can capture intracellular states of single cells. We finally illustrated how the efforts could be used to develop digitals models suitable for both cell factory design and process optimization at industrial scales in the future.
Collapse
Affiliation(s)
- Fabian S F Hartmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Isuru A Udugama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark.
| | - Gerd M Seibold
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Hirokazu Sugiyama
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Krist V Gernaey
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 228 A, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
11
|
Espinel‐Ríos S, Bettenbrock K, Klamt S, Findeisen R. Maximizing batch fermentation efficiency by constrained model‐based optimization and predictive control of adenosine triphosphate turnover. AIChE J 2022. [DOI: 10.1002/aic.17555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sebastián Espinel‐Ríos
- Laboratory for Systems Theory and Automatic Control Otto von Guericke University Magdeburg Germany
- Analysis and Redesign of Biological Networks Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
| | - Katja Bettenbrock
- Analysis and Redesign of Biological Networks Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg Germany
- Technische Universität Darmstadt Darmstadt Germany
| | - Rolf Findeisen
- Laboratory for Systems Theory and Automatic Control Otto von Guericke University Magdeburg Germany
- Control and Cyber‐Physical Systems Laboratory Technical University of Darmstadt Darmstadt Germany
| |
Collapse
|
12
|
Combining Kinetic and Constraint-Based Modelling to Better Understand Metabolism Dynamics. Processes (Basel) 2021. [DOI: 10.3390/pr9101701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To understand the phenotypic capabilities of organisms, it is useful to characterise cellular metabolism through the analysis of its pathways. Dynamic mathematical modelling of metabolic networks is of high interest as it provides the time evolution of the metabolic components. However, it also has limitations, such as the necessary mechanistic details and kinetic parameters are not always available. On the other hand, large metabolic networks exhibit a complex topological structure which can be studied rather efficiently in their stationary regime by constraint-based methods. These methods produce useful predictions on pathway operations. In this review, we present both modelling techniques and we show how they bring complementary views of metabolism. In particular, we show on a simple example how both approaches can be used in conjunction to shed some light on the dynamics of metabolic networks.
Collapse
|
13
|
Modelling Cell Metabolism: A Review on Constraint-Based Steady-State and Kinetic Approaches. Processes (Basel) 2021. [DOI: 10.3390/pr9020322] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Studying cell metabolism serves a plethora of objectives such as the enhancement of bioprocess performance, and advancement in the understanding of cell biology, of drug target discovery, and in metabolic therapy. Remarkable successes in these fields emerged from heuristics approaches, for instance, with the introduction of effective strategies for genetic modifications, drug developments and optimization of bioprocess management. However, heuristics approaches have showed significant shortcomings, such as to describe regulation of metabolic pathways and to extrapolate experimental conditions. In the specific case of bioprocess management, such shortcomings limit their capacity to increase product quality, while maintaining desirable productivity and reproducibility levels. For instance, since heuristics approaches are not capable of prediction of the cellular functions under varying experimental conditions, they may lead to sub-optimal processes. Also, such approaches used for bioprocess control often fail in regulating a process under unexpected variations of external conditions. Therefore, methodologies inspired by the systematic mathematical formulation of cell metabolism have been used to address such drawbacks and achieve robust reproducible results. Mathematical modelling approaches are effective for both the characterization of the cell physiology, and the estimation of metabolic pathways utilization, thus allowing to characterize a cell population metabolic behavior. In this article, we present a review on methodology used and promising mathematical modelling approaches, focusing primarily to investigate metabolic events and regulation. Proceeding from a topological representation of the metabolic networks, we first present the metabolic modelling approaches that investigate cell metabolism at steady state, complying to the constraints imposed by mass conservation law and thermodynamics of reactions reversibility. Constraint-based models (CBMs) are reviewed highlighting the set of assumed optimality functions for reaction pathways. We explore models simulating cell growth dynamics, by expanding flux balance models developed at steady state. Then, discussing a change of metabolic modelling paradigm, we describe dynamic kinetic models that are based on the mathematical representation of the mechanistic description of nonlinear enzyme activities. In such approaches metabolic pathway regulations are considered explicitly as a function of the activity of other components of metabolic networks and possibly far from the metabolic steady state. We have also assessed the significance of metabolic model parameterization in kinetic models, summarizing a standard parameter estimation procedure frequently employed in kinetic metabolic modelling literature. Finally, some optimization practices used for the parameter estimation are reviewed.
Collapse
|