1
|
Rajendran K, Chellappan DR, Ramakrishnan V, Krishnan UM. Therapeutic efficacy of Punarnavadi mandura against phenylhydrazine-induced hemolytic anemia in rats. J Tradit Complement Med 2025; 15:93-104. [PMID: 39807271 PMCID: PMC11725071 DOI: 10.1016/j.jtcme.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 01/16/2025] Open
Abstract
Background & aim Hemolytic anemia is a blood disorder whose incidence is increasing in the world in recent years especially after the pandemic. Conventional treatments include use of steroids and immunosuppresants that are accompanied by numerous adverse effects. With growing interest in using complex multi-component formulations for multi-targeted therapy, the present study aims to investigate the therapeutic efficacy of a traditional Ayurvedic herbomineral preparation, Punarnavadi Mandura, which has been traditionally used as a supplement in iron-deficiency anemia, against phenylhydrazine-induced hemolytic anemia in rodent models. Experimental approaches We employ a combination of in vivo and in silico methods in this work to study the therapeutic potential and to understand the possible molecular targets of this traditional formulation. Conventional drugs prednisolone and ferrous sulphate were used for comparison. Results and conclusion The in vivo studies confirm the ability of Punarnavadi Mandura to reverse pathological changes associated with hemolytic anemia at 100 mg/kg and 200 mg/kg concentration. It restored hemoglobin, bilirubin and white blood cell levels to normal and reduced reticulocytes, hemosiderin and Gamna Gandy bodies in the liver, spleen and kidney. In silico studies suggested that the key constituents in Punarnavadi Mandura interact with high affinity to erythropoietic receptor which could contribute to erythropoiesis. The in silico study also predicted that the phytoconstituents of Punarnavadi Mandura could inhibit TNF-α activity which was validated using gene expression studies.
Collapse
Affiliation(s)
- Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - David Raj Chellappan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
- Centre for Advanced Research in Indian Systems of Medicine, SASTRA Deemed University, Thanjavur, India
| | | | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India
- Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
- School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, India
| |
Collapse
|
2
|
Sponchiado M, Fagan A, Mata L, Bonilla AL, Trevizan-Baú P, Prabhakaran S, Reznikov LR. Sex-dependent regulation of mucin gene transcription and airway secretion and mechanics following intra-airway IL-13 in mice with conditional loss of club cell Creb1. Front Physiol 2024; 15:1392443. [PMID: 38711951 PMCID: PMC11070562 DOI: 10.3389/fphys.2024.1392443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction: Interleukin 13 (IL-13) is an important effector molecule in allergic asthma. IL-13-mediated mucin hypersecretion requires conversion of secretoglobin-positive club cells into goblet cells through suppression of forkhead box A2 (FOXA2) and induction of SAM pointed domain containing ETS transcription factor (SPDEF). IL-13-mediated mucin hypersecretion may also include modulation of purinergic and muscarinic receptors that control basal and stimulated mucin secretion. We recently found that the transcription factor cAMP response element-binding protein (Creb1) inhibits FOXA2 and modulates mucus secretion in mice. Methods: We tested the hypothesis that loss of club cell Creb1 mitigates the pro-mucin effects of IL-13. We challenged male and female mice with conditional loss of club cell Creb1 and wild type littermates with intra-airway IL-13 or vehicle. We also studied human "club cell-like" NCI-H322 cells. Results: Loss of club cell Creb1 augmented IL-13-mediated increases in mRNA for the gel-forming mucins Muc5ac and Muc5b and prevented IL-13-mediated decreases in muscarinic 3 receptor (M3R) mRNA in male airways. In female airways, loss of club cell Creb1 reduced M3R mRNA and significantly blunted IL-13-mediated increases in purinergic receptor P2Y2 (P2ry2) mRNA but did not impact Muc5ac and Muc5b mRNA. Despite changes in mucins and secretion machinery, goblet cell density following cholinergic stimulation was not impacted by loss of club cell Creb1 in either sex. IL-13 treatment decreased basal airway resistance across sexes in mice with loss of club cell Creb1, whereas loss of club cell Creb1 augmented IL-13-mediated increases in airway elastance in response to methacholine. NCI-H322 cells displayed IL-13 signaling components, including IL-13Rα1 and IL-4Rα. Pharmacologic inhibition of CREB reduced IL-13Rα1 mRNA, whereas recombinant CREB decreased IL-4Rα mRNA. Application of IL-13 to NCI-H322 cells increased concentrations of cAMP in a delayed manner, thus linking IL-13 signaling to CREB signaling. Conclusion: These data highlight sex-specific regulation of club cell Creb1 on IL-13-mediated mucin hypersecretion and airway mechanics.
Collapse
Affiliation(s)
- Mariana Sponchiado
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Amy Fagan
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Luz Mata
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Angelina L. Bonilla
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Pedro Trevizan-Baú
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Sreekala Prabhakaran
- Department of Pediatrics Pediatric Pulmonary Division, University of Florida, Gainesville, FL, United States
| | - Leah R. Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
The role of MEOX1 in non-neoplastic and neoplastic diseases. Biomed Pharmacother 2023; 158:114068. [PMID: 36495659 DOI: 10.1016/j.biopha.2022.114068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Targeted gene therapy has shown durable efficacy in non-neoplastic and neoplastic patients. Therefore, finding a suitable target has become a key area of research. Mesenchyme homeobox 1 (MEOX1) is a transcriptional factor that plays a significant role in regulation of somite development. Evidence indicates that abnormalities in MEOX1 expression and function are associated with a variety of pathologies, including non-neoplastic and neoplastic diseases. MEOX1 expression is upregulated during progression of most diseases and plays a critical role in maintenance of the cellular phenotypes such as cell differentiation, cell cycle arrest and senescence, migration, and proliferation. Therefore, MEOX1 may become an important molecular target and therapeutic target. This review will discuss the current state of knowledge on the role of MEOX1 in different diseases.
Collapse
|
4
|
Gurung AB. Human transcriptome profiling: applications in health and disease. TRANSCRIPTOME PROFILING 2023:373-395. [DOI: 10.1016/b978-0-323-91810-7.00020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Hai H, Chen C, Chen D, Li P, Shan Y, Li J. A sensitive electrochemiluminescence DNA biosensor based on the signal amplification of ExoIII enzyme-assisted hybridization chain reaction combined with nanoparticle-loaded multiple probes. Mikrochim Acta 2021; 188:125. [PMID: 33723966 DOI: 10.1007/s00604-021-04777-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
An electrochemiluminescence (ECL) DNA biosensor based on ExoIII exonuclease assistance and hybridization chain reaction (HCR) amplification technology has been constructed. ExoIII exonuclease and triple-helix DNA molecular switch are used in detecting a target in circulation. By combining HCR with AuNPs@DNA, a novel signal probe is built, which enables multiple signal amplification and the high-sensitive detection of transgenic rice BT63 DNA. The Fe3O4@Au solution is added to a magneto-controlled glassy carbon electrode, and sulfhydryl-modified capture DNA (CP) is immobilized on Fe3O4@Au through the Au-S bond. Mercaptoethanol is added to close sites and prevent the nonspecific adsorption of CP on the magnetron glassy carbon electrode. A target DNA is added to a constructed triple-helix DNA molecular centrifuge tube for reaction. Owing to base complementation and the reversible switching of the triple-helix DNA molecular state, the target DNA turns on the triple-helix DNA molecular switch and hybridizes with a long-strand recognition probe (RP) to form a double-stranded DNA (dsDNA). Exonuclease ExoIII is added to specifically recognize and cut the dsDNA and to release the target DNA. The target DNA strand then circulates back completely to open the multiple triple-helix DNA molecular switch, releasing a large number of signal transduction probes (STP). To hybridize with CP, a large amount of STP is added to the electrode. Finally, a AuNPs@DNA signal probe is added to hybridize with STP. H1 and H2 probes are added for the hybridization chain reaction and the indefinite extension of the primer strand on the probe. Then, tris-(bipyridyl)ruthenium(II) is added for ECL signal detection with PBS-tri-n-propylamine as the base solution. In the concentration range 1.0 × 10-16 to 1.0 × 10-8 mol/L of the target DNA, good linear relationship was achieved with the corresponding ECL signal. The detection limit is 3.6 × 10-17 mol/L. The spiked recovery of the rice samples range from 97.2 to 101.5%. The sensor is highly sensitive and has good selectivity, stability, and reproducibility. A novel electrochemiluminescence biosensor with extremely higher sensitivity was prepared for the determination of ultra-trace amount transgenic rice BT63 DNA. The sensitivity was significantly improved by multiple signal enhancements. Firstly, a large number of signal transduction probes are released when the triple-helix DNA molecular switch unlock after recycles assisted by ExoIII exonuclease under target BT63 DNA; and then the signal transduction probes hybridize with the signal probes of AuNPs@(DNA-HCR) produced through hybridization chain reaction. Finally, the signal probes which were embedded with a large amount of electrochemiluminescence reagent produce high luminescence intensity. The detection limit was 3.6 × 10-17 mol/L, which is almost the most sensitive methods reported.
Collapse
Affiliation(s)
- Hong Hai
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Ciping Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Dongli Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Peijun Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China
| | - Yang Shan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.,Hunan Institute of Agriculture Product Processing, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Jianping Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, Guangxi, China.
| |
Collapse
|