1
|
Kalashnikova TP, Kamenshchikov NO, Arsenyeva YA, Podoksenov YK, Kravchenko IV, Kozulin MS, Tyo MA, Churilina EA, Kim EB, Svirko YS, Kozlov BN, Boshchenko AA. High-dose inhaled NO for the prevention of nosocomial pneumonia after cardiac surgery under cardiopulmonary bypass: A proof-of-concept prospective randomised study. Pulmonology 2025; 31:2471706. [PMID: 40019284 DOI: 10.1080/25310429.2025.2471706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/19/2024] [Indexed: 03/01/2025] Open
Abstract
OBJECTIVE This study aimed to assess the safety and potential efficacy of high-dose inhaled nitric oxide therapy for the prevention of postoperative pneumonia in cardiac surgery patients. METHODS A prospective randomised controlled pilot study included 74 patients with moderate risk of postoperative pneumonia after elective cardiac surgery under cardiopulmonary bypass. Patients were randomised into two groups. The main group (NO-group) (n = 37) received inhaled nitric oxide at a dose of 200 ppm for 30 minutes 2 times a day for 5 days or until pneumonia developed. The control group received conventional postoperative care (n = 37). The primary endpoint was the incidence of postoperative pneumonia during in-hospital stay. RESULTS Preventive nitric oxide inhalations were associated with a reduced incidence of postoperative nosocomial pneumonia (2 (5.4%) cases in the main group (NO-group) vs. 9 (24.3%) cases in the control group, p = 0.046; OR = 0.178, 95% CI = 0.036-0.89)). There was no decrease in either peak expiratory flow, or peak inspiratory flow in comparison with the preoperative values in the NO-group. Inhaled nitric oxide therapy is safe. It did not lead to an increase in the incidence of acute kidney injury. CONCLUSIONS High-dose inhaled nitric oxide therapy is safe and effective for the prevention of postoperative nosocomial pneumonia in cardiac surgery.
Collapse
Affiliation(s)
- Tatiana P Kalashnikova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Nikolay O Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Yulia A Arsenyeva
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Yuri K Podoksenov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Igor V Kravchenko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Maxim S Kozulin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Mark A Tyo
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Elena A Churilina
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Elena B Kim
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Yulia S Svirko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Boris N Kozlov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russian Federation
| |
Collapse
|
2
|
Miles TJ, Blackburn KW, Moon MR, Chatterjee S. Optimal Inotropic Support Strategy in Low Cardiac Output Syndrome. Semin Thorac Cardiovasc Surg 2025:S1043-0679(25)00054-1. [PMID: 40254043 DOI: 10.1053/j.semtcvs.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/06/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
Low cardiac output syndrome (LCOS), a form of cardiogenic shock that occurs after cardiac surgery, is associated with an elevated risk of morbidity and mortality. Generally, LCOS is managed medically with inotropes and vasopressors to optimize hemodynamics. However, randomized data comparing the efficacy of individual inotropes in treating LCOS are limited. Consequently, there is little consensus regarding the optimal inotrope strategy, and practice patterns vary widely. This review synthesizes current evidence on pharmacologic, non-mechanical circulatory support strategies for managing LCOS, advocating for a personalized approach tailored to the individual patient's hemodynamic profile and inotropic requirements. Currently available vasoactive agents are discussed, and guidance is provided on their use across specific clinical contexts to support individualized treatment.
Collapse
Affiliation(s)
- Travis J Miles
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Kyle W Blackburn
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Marc R Moon
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, The Texas Heart Institute, Houston, Texas
| | - Subhasis Chatterjee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas; Department of Cardiovascular Surgery, The Texas Heart Institute, Houston, Texas.
| |
Collapse
|
3
|
Chiletti R, Fincher SH, Horton SB, Peek GJ, Checchia P, Butt W. The Role of Nitric Oxide in the Sweep Gas for Patients Receiving Extracorporeal Membrane Oxygenation or Cardiopulmonary Bypass. Can J Cardiol 2025; 41:621-629. [PMID: 39733940 DOI: 10.1016/j.cjca.2024.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/14/2024] [Accepted: 12/21/2024] [Indexed: 12/31/2024] Open
Abstract
Nitric oxide (NO) was proclaimed the 1992 "molecule of the year" by Culotta in Science magazine because of its importance in neuroscience, physiology, and immunology. Inhaled NO has been in clinical use for over 35 years to decrease pulmonary hypertension and improve oxygenation. Over the past 20 years, there has been much research into understanding the role of NO on cell surface receptors, mitochondria, and intracellular processes that involve calcium and superoxide radicals. This research has shown that, irrespective of the cause, NO has a major role in the systemic inflammatory response syndrome and ischemia-reperfusion injury.1 More recent clinical research has focussed on NO use in patients undergoing cardiopulmonary bypass and receiving extracorporeal life support, with some centres incorporating NO into sweep gas as part of routine practice. In this article we review NO pathways in humans, the biologic effects of NO, the interplay between NO and red blood cells, and animal and human studies on the effects of exogenously administered NO.
Collapse
Affiliation(s)
- Roberto Chiletti
- Department of Paediatric Intensive Care, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Sophie H Fincher
- Department of Paediatric Intensive Care, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Critical Care, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen B Horton
- Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, Victoria, Australia; Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Giles J Peek
- Congenital Heart Centre, University of Florida, Gainesville, Florida, USA
| | - Paul Checchia
- Division of Critical Care Medicine, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Warwick Butt
- Department of Paediatric Intensive Care, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Critical Care, Faculty of Medicine, Dentistry & Health Sciences, University of Melbourne, Melbourne, Victoria, Australia; ICU Research Clinical Sciences Theme MCRI, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Papazisi O, van der Schoot MM, Berendsen RR, Arbous SM, le Cessie S, Dekkers OM, Klautz RJM, Marczin N, Palmen M, de Waal EEC. Vasoplegia in Cardiac Surgery: A Systematic Review and Meta-analysis of Current Definitions and Their Influence on Clinical Outcomes. J Cardiothorac Vasc Anesth 2025:S1053-0770(25)00144-2. [PMID: 40074583 DOI: 10.1053/j.jvca.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 03/14/2025]
Abstract
OBJECTIVES To identify differences in the reported vasoplegia incidence, intensive care unit (ICU) length of stay (LOS), and 30-day mortality rates as influenced by different vasoplegia definitions used in cardiac surgery studies. DESIGN A systematic review was performed covering the period 1977 to 2023 using PubMed/MEDLINE, Embase, Web of Science, Cochrane Library, and Emcare and a meta-analysis (PROSPERO: CRD42021258328) was performed. SETTING AND PARTICIPANTS One hundred studies defining vasoplegia in cardiac surgery patients were systematically reviewed. Sixty studies with 20 or more patients, irrespective of design, reporting vasoplegia incidence, ICU LOS, or 30-day mortality were included for meta-analysis. INTERVENTIONS Cardiac surgery on cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS Studies were categorized depending on the used mean arterial pressure (MAP) thresholds. Random intercept logistic regression models were used for meta-analysis of incidence and mortality. Random effect meta-analysis was used for ICU LOS. One hundred studies were reviewed systematically. MAP and cardiac index thresholds varied considerably (<50-80 mmHg and 2.0-3.5 L·min-1m-2, respectively). Vasopressor dosages also differed between definitions. The reported incidence (60 studies; mean incidence, 19.9%; 95% confidence interval [CI], 16.1-24.4) varied largely between studies (2.5%-66.3%; I2 = 97%; p < 0.0001). Meta-regression models, including the MAP-threshold, did not explain this heterogeneity. Similarly, the effect of vasoplegia on ICU LOS, and 30-day mortality was very heterogeneous among studies (I2 = 99% and I2 = 73%, respectively). CONCLUSIONS The large variability in vasoplegia definitions is associated with significant heterogeneity regarding incidence and clinical outcomes, which cannot be explained by factors included in our models. Such variations in definitions leads to inconsistent patient diagnosis and renders published vasoplegia research incomparable.
Collapse
Affiliation(s)
- Olga Papazisi
- Department of Cardiothoracic surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Remco R Berendsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sesmu M Arbous
- Department of Intensive Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Saskia le Cessie
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands; Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Olaf M Dekkers
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Robert J M Klautz
- Department of Cardiothoracic surgery, Leiden University Medical Center, Leiden, the Netherlands; Department of Cardiothoracic surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Nandor Marczin
- Division of Anaesthesia, Pain Medicine and Intensive Care, Imperial College London, Royal Brompton & Harefield Hospitals, Guy's & St. Thomas' NHS, London, United Kingdom; Department of Anesthesia and Intensive Care, Semmelweis University, Budapest, Hungary
| | - Meindert Palmen
- Department of Cardiothoracic surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Eric E C de Waal
- Department of Anesthesiology, University Medical Center Utrecht, the Netherlands; Department of Cardiothoracic surgery, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
5
|
Brinkley L, Brock MA, Stinson G, Bilgili A, Jacobs JP, Bleiweis M, Peek GJ. The biological role and future therapeutic uses of nitric oxide in extracorporeal membrane oxygenation, a narrative review. Perfusion 2025; 40:83-91. [PMID: 38226651 DOI: 10.1177/02676591241228169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
BACKGROUND Nitric oxide (NO) is a gas naturally produced by the human body that plays an important physiological role. Specifically, it binds guanylyl cyclase to induce smooth muscle relaxation. NO's other protective functions have been well documented, particularly its protective endothelial functions, effects on decreasing pulmonary vascular resistance, antiplatelet, and anticoagulation properties. The use of nitric oxide donors as vasodilators has been known since 1876. Inhaled nitric oxide has been used as a pulmonary vasodilator and to improve ventilation perfusion matching since the 1990s. It is currently approved by the United States Food and Drug Administration for neonates with hypoxic respiratory failure, however, it is used off-label for acute respiratory distress syndrome, acute bronchiolitis, and COVID-19. PURPOSE In this article we review the currently understood biological action and therapeutic uses of NO through nitric oxide donors such as inhaled nitric oxide. We will then explore recent studies describing use of NO in cardiopulmonary bypass and extracorporeal membrane oxygenation and speculate on NO's future uses.
Collapse
|
6
|
Li S, Nordick KV, Murrieta-Álvarez I, Kirby RP, Bhattacharya R, Garcia I, Hochman-Mendez C, Rosengart TK, Liao KK, Mondal NK. Prolonged Cardiopulmonary Bypass Time-Induced Endothelial Dysfunction via Glypican-1 Shedding, Inflammation, and Matrix Metalloproteinase 9 in Patients Undergoing Cardiac Surgery. Biomedicines 2024; 13:33. [PMID: 39857617 PMCID: PMC11763025 DOI: 10.3390/biomedicines13010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVES A prolonged cardiopulmonary bypass (CPB) time of over 180 min is linked to poorer outcomes and higher mortality in cardiac surgery. This study examines how glypican-1 shedding, matrix metallopeptidase 9 (MMP9), and the pro-inflammatory cytokine IL-1β may contribute to endothelial dysfunction in patients undergoing on-pump surgery with an extended CPB. METHODS Fifty-one patients undergoing cardiac surgical procedures were divided into two groups based on the intraoperative CPB duration: (i) normal CPB (<180 min, n = 23) and (ii) prolonged CPB (>180 min, n = 28). The preoperative, intraoperative, and postoperative plasma levels of glypican-1, MMP9, and IL-1β were measured. RESULTS Before surgery, the plasma levels of glypican-1, MMP9, and IL-1β were comparable between the normal CPB and the prolonged CPB groups. However, after the end of the CPB, all three markers showed significant elevation in the prolonged CPB group compared to the normal CPB group. Significant correlations were observed between the intraoperative and postoperative levels of MMP9, IL-1β, and glypican-1. A strong positive correlation was also observed between the intraoperative and postoperative levels of glypican-1 and the duration of the CPB. CONCLUSIONS A prolonged CPB triggers a systemic inflammatory response and activates MMP9, leading to glypican-1 shedding and endothelial dysfunction.
Collapse
Affiliation(s)
- Shiyi Li
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Katherine V. Nordick
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Iván Murrieta-Álvarez
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Randall P. Kirby
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rishav Bhattacharya
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ismael Garcia
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX 77030, USA
| | - Todd K. Rosengart
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Surgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kenneth K. Liao
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nandan K. Mondal
- Michael E. DeBakey Department of Surgery, Division of Cardiothoracic Transplantation and Circulatory Support, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX 77030, USA
| |
Collapse
|
7
|
Schaer DJ, Schaer CA, Humar R, Vallelian F, Henderson R, Tanaka KA, Levy JH, Buehler PW. Navigating Hemolysis and the Renal Implications of Hemoglobin Toxicity in Cardiac Surgery. Anesthesiology 2024; 141:1162-1174. [PMID: 39159287 PMCID: PMC11560668 DOI: 10.1097/aln.0000000000005109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Acute kidney injury (AKI) affects 20% to 30% of patients undergoing cardiac surgery with cardiopulmonary bypass (CPB). This review synthesizes clinical evidence indicating that CPB-induced hemolysis plays a pivotal role in the development of AKI. The pathogenesis involves cell-free hemoglobin, which triggers oxidative stress, depletes nitric oxide, and incites inflammation, culminating in renal damage. We highlight emerging interventions, including haptoglobin administration, nitric oxide supplementation, and antioxidants, which are promising in reducing the toxicity of cell-free hemoglobin and the incidence of AKI. Current clinical data support the potential efficacy of these treatments. Our analysis concludes that sufficient proof of concept exists to further develop and test these targeted therapies for preventing hemoglobin-induced AKI in patients undergoing CPB. Cardiopulmonary bypass-induced hemolysis is linked to acute kidney injury in cardiac surgery. Emerging therapies targeting cell-free hemoglobin, like haptoglobin, nitric oxide, and antioxidants, show promise in reducing kidney injury, highlighting the need for further research.
Collapse
Affiliation(s)
- Dominik J Schaer
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Christian A Schaer
- Institute of Anesthesiology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Rok Humar
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Florence Vallelian
- Department of Internal Medicine, University Hospital and University of Zurich, Zurich, Switzerland
| | - Reney Henderson
- Division of Cardiovascular Anesthesia, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenichi A Tanaka
- Department of Anesthesiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jerrold H Levy
- Department of Anesthesiology, Critical Care and Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Paul W Buehler
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, and Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
Yang X, Zhu L, Pan H, Yang Y. Cardiopulmonary bypass associated acute kidney injury: better understanding and better prevention. Ren Fail 2024; 46:2331062. [PMID: 38515271 PMCID: PMC10962309 DOI: 10.1080/0886022x.2024.2331062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/11/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiopulmonary bypass (CPB) is a common technique in cardiac surgery but is associated with acute kidney injury (AKI), which carries considerable morbidity and mortality. In this review, we explore the range and definition of CPB-associated AKI and discuss the possible impact of different disease recognition methods on research outcomes. Furthermore, we introduce the specialized equipment and procedural intricacies associated with CPB surgeries. Based on recent research, we discuss the potential pathogenesis of AKI that may result from CPB, including compromised perfusion and oxygenation, inflammatory activation, oxidative stress, coagulopathy, hemolysis, and endothelial damage. Finally, we explore current interventions aimed at preventing and attenuating renal impairment related to CPB, and presenting these measures from three perspectives: (1) avoiding CPB to eliminate the fundamental impact on renal function; (2) optimizing CPB by adjusting equipment parameters, optimizing surgical procedures, or using improved materials to mitigate kidney damage; (3) employing pharmacological or interventional measures targeting pathogenic factors.
Collapse
Affiliation(s)
- Xutao Yang
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Li Zhu
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
- The Jinhua Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China
| | - Hong Pan
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yi Yang
- The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
9
|
Alkhaleq HA, Hacker I, Karram T, Hamoud S, Kabala A, Abassi Z. Potential Nephroprotective Effect of uPA against Ischemia/Reperfusion-Induced Acute Kidney Injury in αMUPA Mice and HEK-293 Cells. Biomedicines 2024; 12:2323. [PMID: 39457635 PMCID: PMC11505258 DOI: 10.3390/biomedicines12102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The incidence of acute kidney injury (AKI) has been steadily increasing. Despite its high prevalence, there is no pathogenetically rational therapy for AKI. This deficiency stems from the poor understanding of the pathogenesis of AKI. Renal ischemia/hypoxia is one of the leading causes of clinical AKI. This study investigates whether αMUPA mice, overexpressing the urokinase plasminogen activator (uPA) gene are protected against ischemic AKI, thus unraveling a potential renal damage treatment target. Methods: We utilized an in vivo model of I/R-induced AKI in αMUPA mice and in vitro experiments of uPA-treated HEK-293 cells. We evaluated renal injury markers, histological changes, mRNA expression of inflammatory, apoptotic, and autophagy markers, as compared with wild-type animals. Results: the αMUPA mice exhibited less renal injury post-AKI, as was evident by lower SCr, BUN, and renal NGAL and KIM-1 along attenuated adverse histological alterations. Notably, the αMUPA mice exhibited decreased levels pro-inflammatory, fibrotic, apoptotic, and autophagy markers like TGF-β, IL-6, STAT3, IKB, MAPK, Caspase-3, and LC3. By contrast, ACE-2, p-eNOS, and PGC1α were higher in the kidneys of the αMUPA mice. In vitro results of the uPA-treated HEK-293 cells mirrored the in vivo findings. Conclusions: These results indicate that uPA modulates key pathways involved in AKI, offering potential therapeutic targets for mitigating renal damage.
Collapse
Affiliation(s)
- Heba Abd Alkhaleq
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel; (H.A.A.); (I.H.); (A.K.)
| | - Israel Hacker
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel; (H.A.A.); (I.H.); (A.K.)
| | - Tony Karram
- Department of Vascular Surgery, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Shadi Hamoud
- Internal Medicine E, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Aviva Kabala
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel; (H.A.A.); (I.H.); (A.K.)
| | - Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel; (H.A.A.); (I.H.); (A.K.)
- Laboratory Medicine, Rambam Health Care Campus, Haifa 3109601, Israel
| |
Collapse
|
10
|
Mazuryk O, Gurgul I, Oszajca M, Polaczek J, Kieca K, Bieszczad-Żak E, Martyka T, Stochel G. Nitric Oxide Signaling and Sensing in Age-Related Diseases. Antioxidants (Basel) 2024; 13:1213. [PMID: 39456466 PMCID: PMC11504650 DOI: 10.3390/antiox13101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Nitric oxide (NO) is a key signaling molecule involved in numerous physiological and pathological processes within the human body. This review specifically examines the involvement of NO in age-related diseases, focusing on the cardiovascular, nervous, and immune systems. The discussion delves into the mechanisms of NO signaling in these diseases, emphasizing the post-translational modifications of involved proteins, such as S-nitrosation and nitration. The review also covers the dual nature of NO, highlighting both its protective and harmful effects, determined by concentration, location, and timing. Additionally, potential therapies that modulate NO signaling, including the use of NO donors and nitric oxide synthases (NOSs) inhibitors in the treatment of cardiovascular, neurodegenerative, and oncological diseases, are analyzed. Particular attention is paid to the methods for the determination of NO and its derivatives in the context of illness diagnosis and monitoring. The review underscores the complexity and dual role of NO in maintaining cellular balance and suggests areas for future research in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Olga Mazuryk
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Ilona Gurgul
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Konrad Kieca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Ewelina Bieszczad-Żak
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Tobiasz Martyka
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| |
Collapse
|
11
|
Azem K, Novakovsky D, Krasulya B, Fein S, Iluz-Freundlich D, Uhanova J, Kornilov E, Eidelman LA, Kaptzon S, Gorfil D, Aravot D, Barac Y, Aranbitski R. Effect of nitric oxide delivery via cardiopulmonary bypass circuit on postoperative oxygenation in adults undergoing cardiac surgery (NOCARD trial): a randomised controlled trial. Eur J Anaesthesiol 2024; 41:677-686. [PMID: 39037709 DOI: 10.1097/eja.0000000000002022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
BACKGROUND Cardiac surgery involving cardiopulmonary bypass induces a significant systemic inflammatory response, contributing to various postoperative complications, including pulmonary dysfunction, myocardial and kidney injuries. OBJECTIVE To investigate the effect of Nitric Oxide delivery via the cardiopulmonary bypass circuit on various postoperative outcomes. DESIGN A prospective, single-centre, double-blinded, randomised controlled trial. SETTING Rabin Medical Centre, Beilinson Hospital, Israel. PATIENTS Adult patients scheduled for elective cardiac surgery were randomly allocated to one of the study groups. INTERVENTIONS For the treatment group, 40 ppm of nitric oxide was delivered via the cardiopulmonary bypass circuit. For the control group, nitric oxide was not delivered. OUTCOME MEASURES The primary outcome was the incidence of hypoxaemia, defined as a p a O2 /FiO 2 ratio less than 300 within 24 h postoperatively. The secondary outcomes were the incidences of low cardiac output syndrome and acute kidney injury within 72 h postoperatively. RESULTS Ninety-eight patients were included in the final analysis, with 47 patients allocated to the control group and 51 to the Nitric Oxide group. The Nitric Oxide group exhibited significantly lower hypoxaemia rates at admission to the cardiothoracic intensive care unit (47.1 vs. 68.1%), P = 0.043. This effect, however, varied in patients with or without baseline hypoxaemia. Patients with baseline hypoxaemia who received nitric oxide exhibited significantly lower hypoxaemia rates (61.1 vs. 93.8%), P = 0.042, and higher p a O2 /FiO 2 ratios at all time points, F (1,30) = 6.08, P = 0.019. Conversely, this benefit was not observed in patients without baseline hypoxaemia. No significant differences were observed in the incidence of low cardiac output syndrome or acute kidney injury. No substantial safety concerns were noted, and toxic methaemoglobin levels were not observed. CONCLUSIONS Patients with baseline hypoxaemia undergoing cardiac surgery and receiving nitric oxide exhibited lower hypoxaemia rates and higher p a O2 /FiO 2 ratios. No significant differences were found regarding postoperative pulmonary complications and overall outcomes. TRIAL REGISTRATION NCT04807413.
Collapse
Affiliation(s)
- Karam Azem
- From the Department of Anaesthesia (KA, DN, BK, SF, DI-F, EK, LAE, RA), Department of Cardiovascular and Thoracic Surgery, Rabin Medical Centre, Beilinson Hospital, Petah Tikva (SK, DG, DA, YB), Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba (JU), Department of Neurobiology, Weizmann Institute of Science, Rehovot (EK), and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel (KA, DN, BK, SF, DI-F, EK, LAE, SK, DG, DA, YB, RA)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Martín-Fernández M, Casanova AG, Jorge-Monjas P, Morales AI, Tamayo E, López Hernández FJ. A wide scope, pan-comparative, systematic meta-analysis of the efficacy of prophylactic strategies for cardiac surgery-associated acute kidney injury. Biomed Pharmacother 2024; 178:117152. [PMID: 39047420 DOI: 10.1016/j.biopha.2024.117152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Acute kidney injury (AKI) is the most common complication of cardiac surgery. Cardiac surgery-associated AKI (CSA-AKI) is caused by systemic and renal hemodynamic impairment and parenchymal injury. Prophylaxis of CSA-AKI remains an unmet priority, for which preventive strategies based on drug therapies, hydration procedures, and remote ischemic preconditioning (RIPC) have been tested in pre-clinical and clinical studies, with variable success. Contradicting reports and scarce or insufficiently pondered information have blurred conclusions. Therefore, with an aim to contribute to consolidating the available information, we carried out a wide scope, pan-comparative meta-analysis including the accessible information about the most relevant nephroprotective approaches assayed. After a thorough examination of 1892 documents retrieved from PubMed and Web of Science, 150 studies were used for the meta-analysis. Individual odds ratios of efficacy at reducing AKI incidence, need for dialysis, and plasma creatinine elevation were obtained for each alleged protectant. Also, the combined class effect of drug families and protective strategies was also meta-analyzed. Our results show that no drug family or procedure affords substantial protection against CSA-AKI. Only, a mild but significant reduction in the incidence of CSA-AKI by preemptive treatment with dopaminergic and adrenergic drugs, vasodilators, and the RIPC technique. The integrated analysis suggests that single-drug approaches are unlikely to cope with the variety of individual pathophysiological scenarios potentially underlying CSA-AKI. Accordingly, a theragnostic approach involving the etiopathological diagnosis of kidney frailty is necessary to guide research towards the development of pharmacological combinations concomitantly and effectively addressing the key mechanisms of CSA-AKI.
Collapse
Affiliation(s)
- Marta Martín-Fernández
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, Universidad de Valladolid, Valladolid 47005, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| | - Alfredo G Casanova
- Instituto de Investigación Biomédica de Salamanca (IBSAL) de la Fundación Instituto de Ciencias de la Salud de Castilla y León (ICSCYL), Salamanca, Spain; National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiology and Pharmacology, Universidad de Salamanca (USAL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Pablo Jorge-Monjas
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain; Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Valladolid, Spain; Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid 47005, Spain
| | - Ana I Morales
- Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL) de la Fundación Instituto de Ciencias de la Salud de Castilla y León (ICSCYL), Salamanca, Spain; National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiology and Pharmacology, Universidad de Salamanca (USAL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Eduardo Tamayo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain; Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Valladolid, Spain; Department of Surgery, Faculty of Medicine, Universidad de Valladolid, Valladolid 47005, Spain
| | - Francisco J López Hernández
- Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL) de la Fundación Instituto de Ciencias de la Salud de Castilla y León (ICSCYL), Salamanca, Spain; National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiology and Pharmacology, Universidad de Salamanca (USAL), Salamanca, Spain; Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.
| |
Collapse
|
13
|
Kamenshchikov NO, Safaee Fakhr B, Kravchenko IV, Dish AY, Podoksenov YK, Kozlov BN, Kalashnikova TP, Tyo MA, Anfinogenova ND, Boshchenko AA, Berra L. Assessment of continuous low-dose and high-dose burst of inhaled nitric oxide in spontaneously breathing COVID-19 patients: A randomized controlled trial. Nitric Oxide 2024; 149:41-48. [PMID: 38880198 DOI: 10.1016/j.niox.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Inhaled nitric oxide (iNO) showed to improve oxygenation at low doses by reducing intrapulmonary shunt and to display antiviral properties at high doses. To assess the safety and potential benefits, we designed an exploratory clinical trial comparing low-dose with intermittent high-dose iNO to only intermittent high-dose iNO in hypoxemic COVID-19 patients. METHODS In this single-center interventional non-inferiority randomized trial (ClinicalTrials.gov, NCT04476992), twenty oxygen-dependent COVID-19 patients were randomly assigned to the high-dose (200 ppm for 30 min) + continuous low-dose (20 ppm) iNO group (iNO200/20) or the high-dose iNO group (iNO200). Methemoglobinemia (MetHb) assessed 48 h after iNO initiation was the primary endpoint. Reverse-transcription polymerase chain reaction for SARS-CoV-2, inflammatory markers during hospitalization, and heart ultrasounds during the iNO200 treatments were evaluated. RESULTS MetHb difference between iNO groups remained within the non-inferiority limit of 3 %, indicating comparable treatments despite being statistically different (p-value<0.01). Both groups presented similar SpO2/FiO2 ratio at 48 h (iNO200 vs. iNO200/20 341[334-356] vs. 359 [331-380], respectively, p-value = 0.436). Both groups showed the same time to SARS-CoV-2 negativization, hospital length of stay, and recovery time. iNO-treated patients showed quicker SARS-CoV-2 negativization compared to a similar group of non-iNO patients (HR 2.57, 95%CI 1.04-6.33). During the 228 treatments, iNO200 and iNO200/20 groups were comparable for safety, hemodynamic stability, and respiratory function improvement. CONCLUSIONS iNO200/20 and iNO200 are equally safe in non-intubated patients with COVID-19-induced respiratory failure with regards to MetHb and NO2. Larger studies should investigate whether iNO200/20 leads to better outcomes compared to non-iNO treated patients.
Collapse
Affiliation(s)
- Nikolay O Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Bijan Safaee Fakhr
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| | - Igor V Kravchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | | | - Yuri K Podoksenov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Boris N Kozlov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Tatiana P Kalashnikova
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Mark A Tyo
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Nina D Anfinogenova
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences", 634012, Tomsk, Russia
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA; Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
14
|
Kamenshchikov NO, Churilina EA, Korepanov VA, Rebrova TY, Sukhodolo IV, Kozlov BN. Effect of inhaled nitric oxide on intestinal integrity in cardiopulmonary bypass and circulatory arrest simulation: An experimental study. Indian J Anaesth 2024; 68:623-630. [PMID: 39081908 PMCID: PMC11285895 DOI: 10.4103/ija.ija_1267_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 08/02/2024] Open
Abstract
Background and Aims Cardiopulmonary bypass (CPB) and circulatory arrest (CA) can induce intestinal injury and consequently lead to multiple organ dysfunction. Nitric oxide (NO) has protective effects, but its effect on the intestine has not been studied. The study aimed to investigate intestinal injury variables and prove the intestinal protective effects of exogenous nitric oxide when modelling CPB and CA in an experiment. Methods The study was performed on sheep (n = 24). There were four groups: CPB, CPB + NO, CPB + CA and CPB + CA + NO. Sheep in NO groups received intraoperative inhalation of NO at a dose of 80 ppm. Groups without NO underwent CPB and CA without NO delivery. Defaecation rate, dynamics of intestinal fatty acid binding protein (i-FABP), coefficient of microviscosity and polarity in the areas of lipid-lipid and protein-lipid interactions of erythrocyte membranes were assessed. One hour after CPB, the intestinal tissue was collected and assessed for tissue concentrations of adenosine triphosphate (ATP) and lactate. Results The defaecation rate after CPB was higher in the CPB + NO group than in the CPB group. The concentration of i-FABP after CPB was lower in the CPB + NO and CPB + CA + NO groups than in the CPB and CPB + CA groups. Erythrocyte deformability before and after CPB revealed no significant dynamics in groups with NO. The ATP concentration 1 h after CPB was higher in the CPB + NO group than in the CPB group. The morphological picture in groups with NO was better. Conclusion When modelling CPB and CA, NO had a positive effect on the functional and structural state of the intestine and also maintained erythrocyte deformability.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Laboratory of Critical Care Medicine, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russian Federation
| | - Elena A. Churilina
- Laboratory of Critical Care Medicine, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russian Federation
| | - Vyacheslav A. Korepanov
- Laboratory of Molecular and Cellular Pathology and Gene Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russian Federation
| | - Tatiana Y. Rebrova
- Laboratory of Molecular and Cellular Pathology and Gene Diagnostics, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russian Federation
| | - Irina V. Sukhodolo
- Department of Morphology and General Pathology, Siberian State Medical University, 2 Moskovsky trakt, Tomsk, 634050, Russian Federation
| | - Boris N. Kozlov
- Laboratory of Critical Care Medicine, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russian Federation
| |
Collapse
|
15
|
Kamenshchikov NO, Podoksenov YK, Kozlov BN, Maslov LN, Mukhomedzyanov AV, Tyo MA, Boiko AM, Margolis NY, Boshchenko AA, Serebryakova ON, Dzyuman AN, Shirshin AS, Buranov SN, Selemir VD. The Nephroprotective Effect of Nitric Oxide during Extracorporeal Circulation: An Experimental Study. Biomedicines 2024; 12:1298. [PMID: 38927505 PMCID: PMC11201384 DOI: 10.3390/biomedicines12061298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
This study aims to determine the effectiveness of administering 80 ppm nitric oxide in reducing kidney injury, mitochondrial dysfunction and regulated cell death in kidneys during experimental perfusion. Twenty-four sheep were randomized into four groups: two groups received 80 ppm NO conditioning with 90 min of cardiopulmonary bypass (CPB + NO) or 90 min of CPB and hypothermic circulatory arrest (CPB + CA + NO), while two groups received sham protocols (CPB and CPB + CA). Kidney injury was assessed using laboratory (neutrophil gelatinase-associated lipocalin, an acute kidney injury biomarker) and morphological methods (morphometric histological changes in kidney biopsy specimens). A kidney biopsy was performed 60 min after weaning from mechanical perfusion. NO did not increase the concentrations of inhaled NO2 and methemoglobin significantly. The NO-conditioning groups showed less severe kidney injury and mitochondrial dysfunction, with statistical significance in the CPB + NO group and reduced tumor necrosis factor-α expression as a trigger of apoptosis and necroptosis in renal tissue in the CPB + CA + NO group compared to the CPB + CA group. The severity of mitochondrial dysfunction in renal tissue was insignificantly lower in the NO-conditioning groups. We conclude that NO administration is safe and effective at reducing kidney injury, mitochondrial dysfunction and regulated cell death in kidneys during experimental CPB.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Yuri K. Podoksenov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Boris N. Kozlov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Alexander V. Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Mark A. Tyo
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Alexander M. Boiko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Natalya Yu. Margolis
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Alla A. Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk 634012, Russia; (Y.K.P.); (B.N.K.); (L.N.M.); (A.V.M.); (M.A.T.); (A.M.B.); (N.Y.M.); (A.A.B.)
| | - Olga N. Serebryakova
- Department of Morphology and General Pathology, Siberian State Medical University, 2 Moskovsky trakt, Tomsk 634050, Russia; (O.N.S.); (A.N.D.)
| | - Anna N. Dzyuman
- Department of Morphology and General Pathology, Siberian State Medical University, 2 Moskovsky trakt, Tomsk 634050, Russia; (O.N.S.); (A.N.D.)
| | - Alexander S. Shirshin
- Federal State Unitary Enterprise “Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics”, 37, Mira Ave., Nizhny Novgorod Region, Sarov 607190, Russia; (A.S.S.); (S.N.B.); (V.D.S.)
| | - Sergey N. Buranov
- Federal State Unitary Enterprise “Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics”, 37, Mira Ave., Nizhny Novgorod Region, Sarov 607190, Russia; (A.S.S.); (S.N.B.); (V.D.S.)
| | - Victor D. Selemir
- Federal State Unitary Enterprise “Russian Federal Nuclear Center—All-Russian Research Institute of Experimental Physics”, 37, Mira Ave., Nizhny Novgorod Region, Sarov 607190, Russia; (A.S.S.); (S.N.B.); (V.D.S.)
| |
Collapse
|
16
|
Scurt FG, Bose K, Mertens PR, Chatzikyrkou C, Herzog C. Cardiac Surgery-Associated Acute Kidney Injury. KIDNEY360 2024; 5:909-926. [PMID: 38689404 PMCID: PMC11219121 DOI: 10.34067/kid.0000000000000466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
AKI is a common and serious complication of cardiac surgery that has a significant impact on patient morbidity and mortality. The Kidney Disease Improving Global Outcomes definition of AKI is widely used to classify and identify AKI associated with cardiac surgery (cardiac surgery-associated AKI [CSA-AKI]) on the basis of changes in serum creatinine and/or urine output. There are various preoperative, intraoperative, and postoperative risk factors for the development of CSA-AKI which should be recognized and addressed as early as possible to expedite its diagnosis, reduce its occurrence, and prevent or ameliorate its devastating complications. Crucial issues are the inaccuracy of serum creatinine as a surrogate parameter of kidney function in the perioperative setting of cardiothoracic surgery and the necessity to discover more representative markers of the pathophysiology of AKI. However, except for the tissue inhibitor of metalloproteinase-2 and insulin-like growth factor binding protein 7 ratio, other diagnostic biomarkers with an acceptable sensitivity and specificity are still lacking. This article provides a comprehensive review of various aspects of CSA-AKI, including pathogenesis, risk factors, diagnosis, biomarkers, classification, prevention, and treatment management.
Collapse
Affiliation(s)
- Florian G. Scurt
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Bose
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Magdeburg, Magdeburg, Germany
| | - Peter R. Mertens
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Christos Chatzikyrkou
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Carolin Herzog
- Clinic of Nephrology, Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
17
|
Yan Y, Kamenshchikov N, Zheng Z, Lei C. Inhaled nitric oxide and postoperative outcomes in cardiac surgery with cardiopulmonary bypass: A systematic review and meta-analysis. Nitric Oxide 2024; 146:64-74. [PMID: 38556145 DOI: 10.1016/j.niox.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Cardiac surgeries under cardiopulmonary bypass (CPB) are complex procedures with high incidence of complications, morbidity and mortality. The inhaled nitric oxide (iNO) has been frequently used as an important composite of perioperative management during cardiac surgery under CPB. We conducted a meta-analysis of published randomized clinical trials (RCTs) to assess the effects of iNO on reducing postoperative complications, including the duration of postoperative mechanical ventilation, length of intensive care unit (ICU) stay, length of hospital stay, mortality, hemodynamic improvement (the composite right ventricular failure, low cardiac output syndrome, pulmonary arterial pressure, and vasoactive inotropic score) and myocardial injury biomarker (postoperative troponin I levels). Subgroup analyses were performed to assess the effect of modification and interaction. These included iNO dosage, the timing and duration of iNO therapy, different populations (children and adults), and comparators (other vasodilators and placebo or standard care). A comprehensive search for iNO and cardiac surgery was performed on online databases. Twenty-seven studies were included after removing the duplicates and irrelevant articles. The results suggested that iNO could reduce the duration of mechanical ventilation, but had no significance in the ICU stay, hospital stay, and mortality. This may be attributed to the small sample size of the most included studies and heterogeneity in timing, dosage and duration of iNO administration. Well-designed, large-scale, multicenter clinical trials are needed to further explore the effect of iNO in improving postoperative prognosis in cardiovascular surgical patients.
Collapse
Affiliation(s)
- Yun Yan
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China; Department of Anesthesiology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100029, China
| | - Nikolay Kamenshchikov
- Laboratory of Critical Care Medicine, Department of Anesthesiology and Intensive Care, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 111a Kievskaya St., Tomsk, 634012, Russian Federation
| | - Ziyu Zheng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chong Lei
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
18
|
Young AM, Strobel RJ, Rotar EP, Kleiman A, McNeil JS, Teman NR, Hawkins RB, Raphael J, Mehaffey JH. Perioperative acetaminophen is associated with reduced acute kidney injury after cardiac surgery. J Thorac Cardiovasc Surg 2024; 167:1372-1380. [PMID: 36207161 DOI: 10.1016/j.jtcvs.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/19/2022] [Accepted: 09/03/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Cardiac surgery-associated acute kidney injury (AKI) is associated with increased postoperative morbidity and mortality. Evidence suggests an association between perioperative acetaminophen administration and decreased incidence of postoperative AKI in pediatric cardiac surgery patients; however, an effect in adults is unknown. METHODS All patients (n = 6192) undergoing coronary and/or valve surgery with a recorded Society of Thoracic Surgeons (STS) risk score at our institution between 2010 and 2018 were stratified by acetaminophen exposure on the day of surgery using institutional pharmacy records. AKI was determined using the Kidney Disease: Improving Global Outcomes (KDIGO) staging criteria. Logistic regression was used to analyze the association between perioperative acetaminophen and postoperative kidney injury or STS major morbidity. A sensitivity analysis using propensity score matching on the STS predicted risk of renal failure and cardiopulmonary bypass time was performed to account for time bias. RESULTS Perioperative acetaminophen exposure was associated with lower odds of stage 1 to 3 acute kidney injury (odds ratio [OR], 0.68; 95% CI, 0.56-0.83; P < .001) and decreased prolonged postoperative ventilation (OR, 0.53; 95% CI, 0.37-0.76; P < .001). A sensitivity analysis provided well-balanced (standard mean difference <0.10) groups of 401 pairs, in which acetaminophen was associated with a decreased incidence of postoperative AKI (OR, 0.7; 95% CI, 0.52-0.94; P = .016). CONCLUSIONS Exposure to acetaminophen on the day of surgery was associated with a decreased incidence of AKI in our patients undergoing cardiac surgery. These data serve as a measure of effect size to further explore the therapeutic potential of acetaminophen to reduce postoperative AKI after cardiac surgery and to elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Andrew M Young
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, Va
| | - Raymond J Strobel
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, Va
| | - Evan P Rotar
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, Va
| | - Amanda Kleiman
- Department of Anesthesiology, University of Virginia, Charlottesville, Va
| | - John S McNeil
- Department of Anesthesiology, University of Virginia, Charlottesville, Va
| | - Nicholas R Teman
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, University of Virginia, Charlottesville, Va
| | - Robert B Hawkins
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Mich
| | - Jacob Raphael
- Department of Anesthesiology, University of Virginia, Charlottesville, Va
| | - J Hunter Mehaffey
- Department of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown, WVa.
| |
Collapse
|
19
|
Cheruku SR, Raphael J, Neyra JA, Fox AA. Acute Kidney Injury after Cardiac Surgery: Prediction, Prevention, and Management. Anesthesiology 2023; 139:880-898. [PMID: 37812758 PMCID: PMC10841304 DOI: 10.1097/aln.0000000000004734] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Acute kidney injury (AKI) is a common complication in cardiac surgery patients, with a reported incidence of 20 to 30%. The development of AKI is associated with worse short- and long-term mortality, and longer hospital length of stay. The pathogenesis of cardiac surgery-associated AKI is poorly understood but likely involves an interplay between preoperative comorbidities and perioperative stressors. AKI is commonly diagnosed by using increases in serum creatinine or decreased urine output and staged using a standardized definition such as the Kidney Disease Improving Global Outcomes classification. Novel biomarkers under investigation may provide earlier detection and better prediction of AKI, enabling mitigating therapies early in the perioperative period. Recent clinical trials of cardiac surgery patients have demonstrated the benefit of goal-directed oxygen delivery, avoidance of hyperthermic perfusion and specific fluid and medication strategies. This review article highlights both advances and limitations regarding the prevention, prediction, and treatment of cardiac surgery-associated AKI.
Collapse
Affiliation(s)
- Sreekanth R Cheruku
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jacob Raphael
- Department of Anesthesiology and Perioperative Medicine, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Javier A Neyra
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Medicine, Division of Nephrology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amanda A Fox
- Department of Anesthesiology and Pain Management, University of Texas Southwestern Medical Center, Dallas, Texas; McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
20
|
Greenberg JW, Hogue S, Raees MA, Ahmed HF, Abplanalp WA, Guzman-Gomez A, Abdelhamed Z, Thangappan K, Reagor JA, Rose JE, Collins M, Kasten JL, Goldstein SL, Zafar F, Morales DLS, Cooper DS. Exogenous nitric oxide delivery protects against cardiopulmonary bypass-associated acute kidney injury: Histologic and serologic evidence from an ovine model. J Thorac Cardiovasc Surg 2023; 166:e164-e173. [PMID: 37164051 DOI: 10.1016/j.jtcvs.2023.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023]
Abstract
OBJECTIVE Several human studies have associated nitric oxide administration via the cardiopulmonary bypass circuit with decreased incidence of cardiopulmonary bypass-associated acute kidney injury, but histopathologic and serologic evidence of nitric oxide efficacy for acute kidney injury attenuation are lacking. METHODS By using a survival ovine model (72 hours), acute kidney injury was induced by implementing low-flow cardiopulmonary bypass for 2 hours, followed by full-flow cardiopulmonary bypass for 2 hours. The nitric oxide cohort (n = 6) received exogenous nitric oxide through the cardiopulmonary bypass circuit via the oxygenator, and the control group (n = 5) received no nitric oxide. Serial serologic biomarkers and renal histopathology were obtained. RESULTS Baseline characteristics (age, weight) and intraoperative parameters (cardiopulmonary bypass time, urine output, heart rate, arterial pH, and lactate) were equivalent (P > .10) between groups. Postoperatively, urine output, heart rate, respiratory rate, and peripheral arterial saturation were equivalent (P > .10) between groups. Post-cardiopulmonary bypass creatinine elevations from baseline were significantly greater in the control group versus the nitric oxide group at 16, 24, and 48 hours (all P < .05). Histopathologic evidence of moderate/severe acute kidney injury (epithelial necrosis, tubular slough, cast formation, glomerular edema) occurred in 60% (3/5) of the control group versus 0% (0/6) of the nitric oxide group. Cortical tubular epithelial cilia lengthening (a sensitive sign of cellular injury) was significantly greater in the control group than in the nitric oxide group (P = .012). CONCLUSIONS In a survival ovine cardiopulmonary bypass model, nitric oxide administered with cardiopulmonary bypass demonstrated serologic and histologic evidence of renal protection from acute kidney injury. These results provide insight into 1 potential mechanism for cardiopulmonary bypass-associated acute kidney injury and supports continued study of nitric oxide via cardiopulmonary bypass circuit for prevention of acute kidney injury.
Collapse
Affiliation(s)
- Jason W Greenberg
- The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| | - Spencer Hogue
- The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Muhammad Aanish Raees
- The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Hosam F Ahmed
- The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - William A Abplanalp
- The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Amalia Guzman-Gomez
- The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Zakia Abdelhamed
- The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Karthik Thangappan
- The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James A Reagor
- The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - James E Rose
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Michaela Collins
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jennifer L Kasten
- Division of Pathology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Stuart L Goldstein
- Division of Nephrology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Farhan Zafar
- The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David L S Morales
- The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David S Cooper
- The Heart Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|
21
|
Clark JB. Commentary: Encouraging findings for the renal-protective effect of nitric oxide administration during cardiopulmonary bypass. J Thorac Cardiovasc Surg 2023; 166:e176-e177. [PMID: 37164057 DOI: 10.1016/j.jtcvs.2023.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/12/2023]
Affiliation(s)
- Joseph B Clark
- Department of Pediatrics, Penn State Health Children's Hospital, Hershey, Pa.
| |
Collapse
|
22
|
Abouzid M, Roshdy Y, Daniel JM, Rzk FM, Ismeal AAA, Hendawy M, Tanashat M, Elnagar M, Daoud N, Ramadan A. The beneficial use of nitric oxide during cardiopulmonary bypass on postoperative outcomes in children and adult patients: a systematic review and meta-analysis of 2897 patients. Eur J Clin Pharmacol 2023; 79:1425-1442. [PMID: 37650923 PMCID: PMC10618325 DOI: 10.1007/s00228-023-03554-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/13/2023] [Indexed: 09/01/2023]
Abstract
PURPOSE Investigate inhaled nitric oxide's influence on mortality rates, mechanical ventilation and cardiopulmonary bypass duration, and length of stay in the intensive care unit and hospital when administered during cardiopulmonary bypass. METHODS Following the PRISMA guidelines, we searched four electronic databases (PubMed, EMBASE, Cochrane Library, and Web of Science) up to 4th March 2023. The protocol was registered in the PROSPERO database with ID: CRD42023423007. Using Review Manager software, we reported outcomes as risk ratios (RRs) or mean difference (MD) and confidence intervals (CIs). RESULTS The meta-analysis included a total of 17 studies with 2897 patients. Overall, there were no significant differences in using nitric oxide over control concerning mortality (RR = 1.03, 95% CI 0.73 to 1.45; P = 0.88) or cardiopulmonary bypass duration (MD = -0.14, 95% CI - 0.96 to 0.69; P = 0.74). The intensive care unit days were significantly lower in the nitric oxide group than control (MD = -0.80, 95% CI - 1.31 to -0.29; P = 0.002). Difference results were obtained in terms of the length of stay in the hospital according to sensitivity analysis (without sensitivity [MD = -0.41, 95% CI - 0.79 to -0.02; P = 0.04] vs. with sensitivity [MD = -0.31, 95% CI - 0.69 to 0.07; P = 0.11]. Subgroup analysis shows that, in children, nitric oxide was favored over control in significantly reducing the duration of mechanical ventilation (MD = -4.58, 95% CI - 5.63 to -3.53; P < 0.001). CONCLUSION Using inhaled nitric oxide during cardiopulmonary bypass reduces the length of stay in the intensive care unit, and for children, it reduces the duration of mechanical ventilation.
Collapse
Affiliation(s)
- Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Yara Roshdy
- Faculty of Medicine, South Valley University, Qena, Egypt
| | | | | | | | - Mohamed Hendawy
- Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | | | - Nada Daoud
- Faculty of Medicine, University of Tripoli, Tripoli, Libya
| | - Alaa Ramadan
- Faculty of Medicine, South Valley University, Qena, Egypt
| |
Collapse
|
23
|
Chang WT, Wu CC, Liao IC, Lin YW, Chen YC, Ho CH, Lee WC, Lin YC, Chen ZC, Shih JY, Wu NC, Kan WC. Dapagliflozin protects against doxorubicin-induced nephrotoxicity associated with nitric oxide pathway-A translational study. Free Radic Biol Med 2023; 208:103-111. [PMID: 37549754 DOI: 10.1016/j.freeradbiomed.2023.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Doxorubicin (Dox) is a potent anticancer agent, but its associated organ toxicity, including nephrotoxicity, restricts clinical applications. Dapagliflozin (DAPA), a sodium-glucose cotransporter-2 inhibitor, has been shown to slow the progression of kidney disease in patients with and without diabetes. However, the effect of DAPA to counteract Dox-induced nephrotoxicity remains uncertain. Therefore, in this study, we aimed to elucidate the effects of DAPA in mitigating Dox-induced nephrotoxicity. We analyzed the Taiwan National Health Insurance Database to evaluate the incidence of renal failure among breast cancer patients receiving Dox treatment compared to those without. After adjusting for age and comorbidities, we found that the risk of renal failure was significantly higher in Dox-treated patients (incidence rate ratio, 2.45; confidence interval, 1.41-4.26; p = 0.0014). In a parallel study, we orally administered DAPA to Sprague-Dawley rats for 6 weeks, followed by Dox for 4 weeks. DAPA ameliorated Dox-induced glomerular atrophy, renal fibrosis, and dysfunction. Furthermore, DAPA effectively suppressed Dox-induced apoptosis and reactive oxygen species production. On a cellular level, DAPA in HK-2 cells mitigated Dox-mediated suppression of the endothelial NOS pathway and reduced Dox-induced activities of reactive oxygen species and apoptosis-associated proteins. DAPA improved Dox-induced apoptosis and renal dysfunction, suggesting its potential utility in preventing nephrotoxicity in patients with cancer undergoing Dox treatment.
Collapse
Affiliation(s)
- Wei-Ting Chang
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan; Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chia-Chun Wu
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - I-Chuang Liao
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Yu-Wen Lin
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Yi-Chen Chen
- Department of Hospital and Health Care Administration, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chung-Han Ho
- Department of Hospital and Health Care Administration, Chi-Mei Medical Center, Tainan, Taiwan; Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Wei-Chieh Lee
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan; Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - You-Cheng Lin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Zhih-Cherng Chen
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan; Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Jhih-Yuan Shih
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan; Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Nan-Chun Wu
- Division of Cardiovascular Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan; Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.
| | - Wei-Chih Kan
- Division of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan; Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan.
| |
Collapse
|
24
|
Radovskiy AM, Bautin AE, Marichev AO, Osovskikh VV, Semenova NY, Artyukhina ZE, Murashova LA, Zinserling VA. NO Addition during Gas Oxygenation Reduces Liver and Kidney Injury during Prolonged Cardiopulmonary Bypass. PATHOPHYSIOLOGY 2023; 30:484-504. [PMID: 37873857 PMCID: PMC10594502 DOI: 10.3390/pathophysiology30040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Objective. To evaluate the effect of NO added to the sweep gas of the oxygenator during cardiopulmonary bypass (CPB) on the liver and kidneys in pigs. Methods. An experiment was carried out on 10 pigs undergoing cardiac surgery using CPB. NO was added to the sweep gas of the oxygenator at a concentration of 100 ppm for the animals in the experimental group (CPB-NO, n = 5). Animals in the control group (CPB-contr, n = 5) did not receive NO in the sweep gas of the oxygenator. The CPB lasted 4 h, followed by postoperative monitoring for 12 h. To assess the injury to the liver and kidneys, the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), bilirubin, creatinine, and neutrophil gelatinase-associated lipocalin (NGAL) were determined initially, at weaning from the CPB, and 6 and 12 h after weaning from the CPB. The glomerular filtration rate (GFR) was evaluated initially, at weaning from the CPB, and 6 and 12 h after weaning from the CPB. A pathomorphological study of the liver and kidneys was performed using semiquantitative morphometry. Results. The long four-hour period of CPB deliberately used in our experiment caused liver and kidney injury. In the CPB-contr group, an increase in the ALT concentration was found: 43 (34; 44) U/L at baseline to 82 (53; 99) U/L 12 h after CPB, p < 0.05. The AST concentration in the CPB-contr group increased from 25 (17; 26) U/L at baseline to 269 (164; 376) U/L 12 h after CPB, p < 0.05. We found no significant increase in the ALT and AST concentrations in the CPB-NO group. There were no significant differences in ALT and AST concentrations between the CPB-NO and CPB-contr groups at all the study time-points. In the CPB-contr group, an increase in the creatinine level was found from 131 (129; 133) µmol/L at baseline to 273 (241; 306) µmol/L 12 h after CPB, p < 0.05. We found no significant increase in creatinine level in the CPB-NO group. Creatinine levels in the CPB-NO group were significantly lower than in the CPB-contr group 12 h after weaning from CPB: 183 (168; 196) vs. 273 (241; 306) µmol/L; p = 0.008. The GFR in the CPB-NO group was significantly higher than in the CPB-contr group 6 h after weaning from CPB: 78.9 (77.8; 82.3) vs. 67.9 (62.3; 69.2) mL/min; p = 0.016. GFR was significantly higher in the CPB-NO group than in the CPB-contr group 12 h after weaning from CPB: 67.7 (65.5; 68.0) vs. 50.3 (48.7; 54.9) mL/min; p = 0.032. We found no significant differences between the study groups in the level of NGAL. We found several differences between the groups in the pathomorphological study. Conclusions. NO added to the sweep gas of the oxygenator reduces creatinine levels and increases GFR during prolonged CPB injury. Further research is required.
Collapse
|
25
|
Ferreira LO, Vasconcelos VW, Lima JDS, Vieira Neto JR, da Costa GE, Esteves JDC, de Sousa SC, Moura JA, Santos FRS, Leitão Filho JM, Protásio MR, Araújo PS, Lemos CJDS, Resende KD, Lopes DCF. Biochemical Changes in Cardiopulmonary Bypass in Cardiac Surgery: New Insights. J Pers Med 2023; 13:1506. [PMID: 37888117 PMCID: PMC10608001 DOI: 10.3390/jpm13101506] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 10/28/2023] Open
Abstract
Patients undergoing coronary revascularization with extracorporeal circulation or cardiopulmonary bypass (CPB) may develop several biochemical changes in the microcirculation that lead to a systemic inflammatory response. Surgical incision, post-CPB reperfusion injury and blood contact with non-endothelial membranes can activate inflammatory signaling pathways that lead to the production and activation of inflammatory cells, with cytokine production and oxidative stress. This inflammatory storm can cause damage to vital organs, especially the heart, and thus lead to complications in the postoperative period. In addition to the organic pathophysiology during and after the period of exposure to extracorporeal circulation, this review addresses new perspectives for intraoperative treatment and management that may lead to a reduction in this inflammatory storm and thereby improve the prognosis and possibly reduce the mortality of these patients.
Collapse
Affiliation(s)
- Luan Oliveira Ferreira
- Residency Program in Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, Brazil; (V.W.V.); (J.d.S.L.); (J.R.V.N.); (G.E.d.C.); (J.d.C.E.); (S.C.d.S.); (J.A.M.); (F.R.S.S.); (J.M.L.F.); (K.D.R.)
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, Brazil
| | - Victoria Winkler Vasconcelos
- Residency Program in Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, Brazil; (V.W.V.); (J.d.S.L.); (J.R.V.N.); (G.E.d.C.); (J.d.C.E.); (S.C.d.S.); (J.A.M.); (F.R.S.S.); (J.M.L.F.); (K.D.R.)
| | - Janielle de Sousa Lima
- Residency Program in Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, Brazil; (V.W.V.); (J.d.S.L.); (J.R.V.N.); (G.E.d.C.); (J.d.C.E.); (S.C.d.S.); (J.A.M.); (F.R.S.S.); (J.M.L.F.); (K.D.R.)
| | - Jaime Rodrigues Vieira Neto
- Residency Program in Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, Brazil; (V.W.V.); (J.d.S.L.); (J.R.V.N.); (G.E.d.C.); (J.d.C.E.); (S.C.d.S.); (J.A.M.); (F.R.S.S.); (J.M.L.F.); (K.D.R.)
| | - Giovana Escribano da Costa
- Residency Program in Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, Brazil; (V.W.V.); (J.d.S.L.); (J.R.V.N.); (G.E.d.C.); (J.d.C.E.); (S.C.d.S.); (J.A.M.); (F.R.S.S.); (J.M.L.F.); (K.D.R.)
| | - Jordana de Castro Esteves
- Residency Program in Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, Brazil; (V.W.V.); (J.d.S.L.); (J.R.V.N.); (G.E.d.C.); (J.d.C.E.); (S.C.d.S.); (J.A.M.); (F.R.S.S.); (J.M.L.F.); (K.D.R.)
| | - Sallatiel Cabral de Sousa
- Residency Program in Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, Brazil; (V.W.V.); (J.d.S.L.); (J.R.V.N.); (G.E.d.C.); (J.d.C.E.); (S.C.d.S.); (J.A.M.); (F.R.S.S.); (J.M.L.F.); (K.D.R.)
| | - Jonathan Almeida Moura
- Residency Program in Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, Brazil; (V.W.V.); (J.d.S.L.); (J.R.V.N.); (G.E.d.C.); (J.d.C.E.); (S.C.d.S.); (J.A.M.); (F.R.S.S.); (J.M.L.F.); (K.D.R.)
| | - Felipe Ruda Silva Santos
- Residency Program in Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, Brazil; (V.W.V.); (J.d.S.L.); (J.R.V.N.); (G.E.d.C.); (J.d.C.E.); (S.C.d.S.); (J.A.M.); (F.R.S.S.); (J.M.L.F.); (K.D.R.)
| | - João Monteiro Leitão Filho
- Residency Program in Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, Brazil; (V.W.V.); (J.d.S.L.); (J.R.V.N.); (G.E.d.C.); (J.d.C.E.); (S.C.d.S.); (J.A.M.); (F.R.S.S.); (J.M.L.F.); (K.D.R.)
| | | | - Pollyana Sousa Araújo
- Department of Cardiovascular Anesthesiology, Hospital Clínicas Gaspar Vianna, Belém 66083-106, Brazil; (P.S.A.); (C.J.d.S.L.)
| | - Cláudio José da Silva Lemos
- Department of Cardiovascular Anesthesiology, Hospital Clínicas Gaspar Vianna, Belém 66083-106, Brazil; (P.S.A.); (C.J.d.S.L.)
| | - Karina Dias Resende
- Residency Program in Anesthesiology, João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, Brazil; (V.W.V.); (J.d.S.L.); (J.R.V.N.); (G.E.d.C.); (J.d.C.E.); (S.C.d.S.); (J.A.M.); (F.R.S.S.); (J.M.L.F.); (K.D.R.)
| | - Dielly Catrina Favacho Lopes
- Laboratory of Experimental Neuropathology, João de Barros Barreto University Hospital, Federal University of Pará, Belém 66073-000, Brazil
| |
Collapse
|
26
|
Chen Y, Dong K, Fang C, Shi H, Luo W, Tang CE, Luo F. The predictive values of monocyte-lymphocyte ratio in postoperative acute kidney injury and prognosis of patients with Stanford type A aortic dissection. Front Immunol 2023; 14:1195421. [PMID: 37554321 PMCID: PMC10404983 DOI: 10.3389/fimmu.2023.1195421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/03/2023] [Indexed: 08/10/2023] Open
Abstract
Objectives Postoperative acute kidney injury (pAKI) is a serious complication of Stanford type A aortic dissection (TAAD) surgery, which is significantly associated with the inflammatory response. This study aimed to explore the relationship between blood count-derived inflammatory markers (BCDIMs) and pAKI and to construct a predictive model for pAKI. Methods Patients who underwent TAAD surgery were obtained from our center and the Medical Information Mart for Intensive Care (MIMIC)-IV database. The differences in preoperative BCDIMs and clinical outcomes of patients with and without pAKI were analyzed. Logistic regression was used to construct predictive models based on preoperative BCDIMs or white cell counts (WCCs). The performance of the BCDIMs and WCCs models was evaluated and compared using the receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), Hosmer-Lemeshow test, calibration plot, net reclassification index (NRI), integrated discrimination improvement index (IDI), and decision curve analysis (DCA). The Kaplan-Meier curves were applied to compare the survival rate between different groups. Results The overall incidence of pAKI in patients who underwent TAAD surgery from our center was 48.63% (124/255). The presence of pAKI was associated with longer ventilation time, higher incidence of cerebral complications and postoperative hepatic dysfunction, and higher in-hospital mortality. The results of the logistic regression indicated that the monocyte-lymphocyte ratio (MLR) was an independent risk factor for pAKI. The BCDIMs model had good discriminating ability, predictive ability, and clinical utility. In addition, the performance of the BCDIMs model was significantly better than that of the WCCs model. Analysis of data from the MIMIC-IV database validated that MLR was an independent risk factor for pAKI and had predictive value for pAKI. Finally, data from the MIMIC-IV database demonstrated that patients with a high MLR had a significantly poor 28-day survival rate when compared to patients with a low MLR. Conclusion Our study suggested that the MLR is an independent risk factor for pAKI. A predictive model based on BCDIMs had good discriminating ability, predictive ability, and clinical utility. Moreover, the performance of the BCDIMs model was significantly better than that of the WCCs model. Finally, a high MLR was significantly associated with poor short-term survival of patients who underwent TAAD surgery.
Collapse
Affiliation(s)
- Yubin Chen
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kaiyi Dong
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cheng Fang
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Shi
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenjie Luo
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Can-e Tang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- The Institute of Medical Science Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fanyan Luo
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Kamenshchikov NO, Duong N, Berra L. Nitric Oxide in Cardiac Surgery: A Review Article. Biomedicines 2023; 11:1085. [PMID: 37189703 PMCID: PMC10135597 DOI: 10.3390/biomedicines11041085] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Perioperative organ injury remains a medical, social and economic problem in cardiac surgery. Patients with postoperative organ dysfunction have increases in morbidity, length of stay, long-term mortality, treatment costs and rehabilitation time. Currently, there are no pharmaceutical technologies or non-pharmacological interventions that can mitigate the continuum of multiple organ dysfunction and improve the outcomes of cardiac surgery. It is essential to identify agents that trigger or mediate an organ-protective phenotype during cardiac surgery. The authors highlight nitric oxide (NO) ability to act as an agent for perioperative protection of organs and tissues, especially in the heart-kidney axis. NO has been delivered in clinical practice at an acceptable cost, and the side effects of its use are known, predictable, reversible and relatively rare. This review presents basic data, physiological research and literature on the clinical application of NO in cardiac surgery. Results support the use of NO as a safe and promising approach in perioperative patient management. Further clinical research is required to define the role of NO as an adjunct therapy that can improve outcomes in cardiac surgery. Clinicians also have to identify cohorts of responders for perioperative NO therapy and the optimal modes for this technology.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Nicolette Duong
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Respiratory Care Service, Patient Care Services, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
28
|
Kamenshchikov NO, Berra L, Carroll RW. Therapeutic Effects of Inhaled Nitric Oxide Therapy in COVID-19 Patients. Biomedicines 2022; 10:biomedicines10020369. [PMID: 35203578 PMCID: PMC8962307 DOI: 10.3390/biomedicines10020369] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 01/08/2023] Open
Abstract
The global COVID-19 pandemic has become the largest public health challenge of recent years. The incidence of COVID-19-related acute hypoxemic respiratory failure (AHRF) occurs in up to 15% of hospitalized patients. Antiviral drugs currently available to clinicians have little to no effect on mortality, length of in-hospital stay, the need for mechanical ventilation, or long-term effects. Inhaled nitric oxide (iNO) administration is a promising new non-standard approach to directly treat viral burden while enhancing oxygenation. Along with its putative antiviral affect in COVID-19 patients, iNO can reduce inflammatory cell-mediated lung injury by inhibiting neutrophil activation, lowering pulmonary vascular resistance and decreasing edema in the alveolar spaces, collectively enhancing ventilation/perfusion matching. This narrative review article presents recent literature on the iNO therapy use for COVID-19 patients. The authors suggest that early administration of the iNO therapy may be a safe and promising approach for the treatment of COVID-19 patients. The authors also discuss unconventional approaches to treatment, continuous versus intermittent high-dose iNO therapy, timing of initiation of therapy (early versus late), and novel delivery systems. Future laboratory and clinical research is required to define the role of iNO as an adjunct therapy against bacterial, viral, and fungal infections.
Collapse
Affiliation(s)
- Nikolay O. Kamenshchikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
- Correspondence:
| | - Lorenzo Berra
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA;
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA;
| | - Ryan W. Carroll
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA;
- Division of Pediatric Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
29
|
Commentary: Just say NO! J Thorac Cardiovasc Surg 2020; 163:1405-1406. [PMID: 32482399 DOI: 10.1016/j.jtcvs.2020.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 11/21/2022]
|
30
|
Augoustides JG. Commentary: Nitric oxide and acute kidney injury: Understanding the puzzle of renal rescue after cardiac surgery. J Thorac Cardiovasc Surg 2020; 163:1404-1405. [PMID: 32402384 DOI: 10.1016/j.jtcvs.2020.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 11/25/2022]
Affiliation(s)
- John G Augoustides
- Cardiovascular and Thoracic Section, Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|