1
|
Estevez-Fregoso E, Kilic A, Rodríguez-Vera D, Nicanor-Juárez LE, Romero-Rizo CEM, Farfán-García ED, Soriano-Ursúa MA. Effects of Boron-Containing Compounds on Liposoluble Hormone Functions. INORGANICS 2023; 11:84. [DOI: 10.3390/inorganics11020084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2024] Open
Abstract
Boron-containing compounds (BCC), particularly boronic acids and derivatives, are being increasingly tested as diagnostic and therapeutic agents. Some effects of BCC involve phenomena linked to the action of steroid or thyroid hormones; among these, are the effects on muscle mass or basal metabolism. Additionally, some toxicology reports on mammals, including humans, sound an alert concerning damage to several systems, among which are the negative effects on the induction of male infertility. Systemic and local mechanisms to explain changes in metabolism and impaired fertility were collected and presented. Then, we presented the putative pharmacodynamic and pharmacokinetic mechanisms involved and demonstrated in these events. In addition, it is proposed that there are adducts of some oxygenated BCC with cis-diols in fructose, an essential source of energy for sperm–cell motility, an uncoupling of sex hormone-binding globulin (SHBG) and its ligands, and the modulation of the DNA synthetic rate. These effects share the reactivity of boron-containing compounds on the cis-diols of key molecules. Moreover, data reporting no DNA damage after BCC administration are included. Further studies are required to support the clear role of BCC through these events to disrupt metabolism or fertility in mammals. If such phenomena are confirmed and elucidated, an advance could be useful to design strategies for avoiding BCC toxicity after BCC administration, and possibly for designing metabolism regulators and contraceptive drugs, among other purposes. Boronic derivatives and carboranes have been proposed and studied in this field.
Collapse
Affiliation(s)
- Elizabeth Estevez-Fregoso
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Ahmet Kilic
- Department of Chemistry, Harran University, 63190 Sanliurfa, Turkey
| | - Diana Rodríguez-Vera
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Luis E. Nicanor-Juárez
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - C. Elena M. Romero-Rizo
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Eunice D. Farfán-García
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| | - Marvin A. Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, 11340 Ciudad de México (CDMX), Mexico
| |
Collapse
|
2
|
Shokrani H, Shokrani A, Sajadi SM, Seidi F, Mashhadzadeh AH, Rabiee N, Saeb MR, Aminabhavi T, Webster TJ. Cell-Seeded Biomaterial Scaffolds: The Urgent Need for Unanswered Accelerated Angiogenesis. Int J Nanomedicine 2022; 17:1035-1068. [PMID: 35309965 PMCID: PMC8927652 DOI: 10.2147/ijn.s353062] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
One of the most arduous challenges in tissue engineering is neovascularization, without which there is a lack of nutrients delivered to a target tissue. Angiogenesis should be completed at an optimal density and within an appropriate period of time to prevent cell necrosis. Failure to meet this challenge brings about poor functionality for the tissue in comparison with the native tissue, extensively reducing cell viability. Prior studies devoted to angiogenesis have provided researchers with some biomaterial scaffolds and cell choices for angiogenesis. For example, while most current angiogenesis approaches require a variety of stimulatory factors ranging from biomechanical to biomolecular to cellular, some other promising stimulatory factors have been underdeveloped (such as electrical, topographical, and magnetic). When it comes to choosing biomaterial scaffolds in tissue engineering for angiogenesis, key traits rush to mind including biocompatibility, appropriate physical and mechanical properties (adhesion strength, shear stress, and malleability), as well as identifying the appropriate biomaterial in terms of stability and degradation profile, all of which may leave essential trace materials behind adversely influencing angiogenesis. Nevertheless, the selection of the best biomaterial and cells still remains an area of hot dispute as such previous studies have not sufficiently classified, integrated, or compared approaches. To address the aforementioned need, this review article summarizes a variety of natural and synthetic scaffolds including hydrogels that support angiogenesis. Furthermore, we review a variety of cell sources utilized for cell seeding and influential factors used for angiogenesis with a concentrated focus on biomechanical factors, with unique stimulatory factors. Lastly, we provide a bottom-to-up overview of angiogenic biomaterials and cell selection, highlighting parameters that need to be addressed in future studies.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Erbil, 625, Iraq
- Department of Phytochemistry, SRC, Soran University, Soran, KRG, 624, Iraq
- Correspondence: S Mohammad Sajadi; Navid Rabiee, Email ; ;
| | - Farzad Seidi
- Jiangsu Co–Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, People’s Republic of China
| | - Amin Hamed Mashhadzadeh
- Mechanical and Aerospace Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, 010000, Kazakhstan
| | - Navid Rabiee
- Department of Physics, Sharif University of Technology, Tehran, Iran
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Tejraj Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, India
- Department of Chemistry, Karnatak University, Dharwad, 580 003, India
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University, Tianjin, People’s Republic of China
- Center for Biomaterials, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
3
|
Białek M, Czauderna M, Krajewska K, Przybylski W. Selected physiological effects of boron compounds for animals and humans. A review. JOURNAL OF ANIMAL AND FEED SCIENCES 2019. [DOI: 10.22358/jafs/114546/2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Jin E, Hu Q, Ren M, Jin G, Liang L, Li S. Effects of Selenium Yeast in Combination with Boron on Muscle Growth and Muscle Quality in Broilers. Biol Trace Elem Res 2019; 190:472-483. [PMID: 30392019 DOI: 10.1007/s12011-018-1548-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/09/2018] [Indexed: 11/29/2022]
Abstract
The effect of selenium yeast in combination with boron on both growth and quality of the muscle in broilers was investigated. A total of 600 one-day-old Arbor Acres broilers were randomly divided into five groups with 120 broilers per group (6 replicates per group). The control group received a basal diet, and experimental groups I-IV received the same basal diet supplemented with 0.3 mg/kg selenium yeast and different doses of boron (0, 5, 10, and 15 mg/kg, respectively). The experiment was conducted for 42 days. Breast and thigh muscles were harvested and muscle quality were examined on day 21 and day 42 of the experiment. Compared to the control group, at 21 days of age, the thigh muscle weight and index were significantly increased in broilers of experimental group II (all P < 0.05); however, the drip loss and shear force of breast and thigh muscle were significantly decreased (P < 0.05). At 42 days of age, the breast muscle weight and index as well as the breast and thigh muscle water holding capability had significantly increased in broilers of experimental group II (all P < 0.05); the breast and thigh muscle drip loss, cooking loss and shear force, and thigh muscle fiber diameter were significantly reduced (all P < 0.05). Breast and thigh muscle fibers were tightly arranged with small cross-sectional areas in broilers of experimental group II. These results suggest that supplementation of 0.3 mg/kg selenium yeast in combination with 5 mg/kg boron in the basal diet can promote muscle growth and improved muscle quality in broilers.
Collapse
Affiliation(s)
- Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Anhui Province, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Anhui Province, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Anhui Province, China
| | - Guangming Jin
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Anhui Province, China
| | - Lin Liang
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Anhui Province, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, No.9 Donghua Road, Fengyang County, Anhui Province, China.
- Key Laboratory for the Quality and Safety Control of Pork in the Ministry of Agriculture, No. 9 Yongxing West Road, Lixin County, Anhui Province, China.
| |
Collapse
|
5
|
Jin E, Pei Y, Liu T, Ren M, Hu Q, Gu Y, Li S. Effects of boron on the proliferation, apoptosis and immune function of splenic lymphocytes through ERα and ERβ. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1626809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Erhui Jin
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| | - Yaqiong Pei
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| | - Ting Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, Chuzhou, People’s Republic of China
| |
Collapse
|
6
|
Boyacioglu O, Orenay-Boyacioglu S, Yildirim H, Korkmaz M. Boron intake, osteocalcin polymorphism and serum level in postmenopausal osteoporosis. J Trace Elem Med Biol 2018; 48:52-56. [PMID: 29773193 DOI: 10.1016/j.jtemb.2018.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 11/19/2022]
Abstract
The relationship between daily boron intake and osteocalcin-mediated osteoporosis was studied in boron-exposed postmenopausal women. It is known that boron and osteocalcin are important in bone metabolism, however the effect of boron in bone metabolism has not been fully discovered. The study was performed on 53 postmenopausal women aged 55-60 living in parts of Balikesir, Turkey, where the subjects are naturally exposed to high (≥1 mg/L) or low (<1 mg/L) boron concentration in drinking water. 24-h urine samples were collected from all participants and creatinine clearance was detected. Boron intake levels of the subjects whose clearance levels were between 80-124 mL/min were measured by inductively coupled plasma-optical emission spectrometry (ICP-OES) in urine samples. Serum osteocalcin levels of the subjects were measured by osteocalcin enzyme-linked immunosorbent assay (ELISA) kit. Osteocalcin polymorphism rs1800247 was detected using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. Serum osteocalcin levels in boron-exposed postmenopausal women were significantly higher than that of control group (P ≤ 0.05) and the correlation between the serum osteocalcin level and rs1800247 polymorphism was not significant in both groups (P > 0.05). The differences in the distribution of osteocalcin genotypes and alleles in postmenopausal women were not significant between the boron exposed and the control groups (P > 0.05). Serum osteocalcin level in the CC genotype was significantly higher compared to the TC genotype in boron-exposed group (P ≤ 0.05). Our study suggests that daily boron intake of 1 mg/L may affect bone metabolism in postmenopausal women positively.
Collapse
Affiliation(s)
- Olcay Boyacioglu
- Department of Food Engineering, Faculty of Engineering, Adnan Menderes University, Aydin, Turkey
| | - Seda Orenay-Boyacioglu
- Adnan Menderes University, Department of Medical Genetics, Faculty of Medicine, Aydin, Turkey.
| | - Hatice Yildirim
- Department of Medical Biology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Mehmet Korkmaz
- Department of Medical Biology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| |
Collapse
|
7
|
Jin E, Ren M, Liu W, Liang S, Hu Q, Gu Y, Li S. Effect of Boron on Thymic Cytokine Expression, Hormone Secretion, Antioxidant Functions, Cell Proliferation, and Apoptosis Potential via the Extracellular Signal-Regulated Kinases 1 and 2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11280-11291. [PMID: 29032684 DOI: 10.1021/acs.jafc.7b04069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Boron is an essential trace element in animals. Appropriate boron supplementation can promote thymus development; however, a high dose of boron can lead to adverse effects and cause toxicity. The influencing mechanism of boron on the animal body remains unclear. In this study, we examined the effect of boron on cytokine expression, thymosin and thymopoietin secretion, antioxidant function, cell proliferation and apoptosis, and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the thymus of rats. We found that supplementation with 10 and 20 mg/L boron to the drinking water significantly elevated levels of interleukin 2 (IL-2), interferon γ (IFN-γ), interleukin 4 (IL-4), and thymosin α1 in the thymus of rats (p < 0.05), increased the number of positive proliferating cell nuclear antigen (PCNA+) cells and concentrations of glutathione peroxidase (GSH-Px) and phosphorylated extracellular signal-regulated kinase (p-ERK) (p < 0.05), and promoted mRNA expression of PCNA and ERK1/2 in thymocytes (p < 0.05). However, the number of caspase-3+ cells and the expression level of caspase-3 mRNA were reduced (p < 0.05). Supplementation with 40, 80, and 160 mg/L boron had no apparent effect on many of the above indicators. In contrast, supplementation with 480 and 640 mg/L boron had the opposite effect on the above indicators in rats and elevated levels of pro-inflammatory cytokines, such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α) (p < 0.05). Our study showed that supplementation of various doses of boron to the drinking water had a U-shaped dose-effect relationship with thymic cytokine expression, hormone secretion, antioxidant function, cell proliferation, and apoptosis. Specifically, supplementation with 10 and 20 mg/L boron promoted thymocyte proliferation and enhanced thymic functions. However, supplementation with 480 and 640 mg/L boron inhibited thymic functions and increased the number of apoptotic thymocytes, suggesting that the effects of boron on thymic functions may be caused via the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Erhui Jin
- College of Animal Science, Anhui Science and Technology University , 9 Donghua Road, Fengyang, Chuzhou, Anhui 233100, People's Republic of China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University , 9 Donghua Road, Fengyang, Chuzhou, Anhui 233100, People's Republic of China
| | - Wenwen Liu
- College of Animal Science, Anhui Science and Technology University , 9 Donghua Road, Fengyang, Chuzhou, Anhui 233100, People's Republic of China
| | - Shuang Liang
- College of Animal Science, Anhui Science and Technology University , 9 Donghua Road, Fengyang, Chuzhou, Anhui 233100, People's Republic of China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University , 9 Donghua Road, Fengyang, Chuzhou, Anhui 233100, People's Republic of China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University , 9 Donghua Road, Fengyang, Chuzhou, Anhui 233100, People's Republic of China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University , 9 Donghua Road, Fengyang, Chuzhou, Anhui 233100, People's Republic of China
| |
Collapse
|