1
|
Xiong L, Huang J, Wu C, Yuan Q, Wang S, Zhu L, Li Z, Sun Z, Fang Y, Li W, Hu G. Yttrium chloride induces ferroptosis in cardiomyocytes via iron accumulation and triggers cardiac lipid peroxidation and inflammation that cause heart adverse events in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115279. [PMID: 37480692 DOI: 10.1016/j.ecoenv.2023.115279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
The growing presence of yttrium (Y) in the environment raises concern regarding its safety and toxicity. However, limited toxicological data are available to determine cardiotoxicity of Y and its underlying mechanisms. In the present study, yttrium chloride (YCl3) intervention with different doses was performed in male Kunming mice for the toxicological evaluation of Y in the heart. After 28 days of intragastric administration, 500 mg/kg·bw YCl3 induces iron accumulation in cardiomyocytes, and triggers ferroptosis through the glutathione peroxidase 4 (GPX4)/glutathione (GSH)/system Xc- axis via the inhibition of Nrf2 signaling pathway. This process led to cardiac lipid peroxidation and inflammatory response. Further RNA sequencing transcriptome analysis found that many genes involved in ferroptosis and lipid metabolism-related pathways were enriched. The ferroptosis induced by YCl3 in cardiomyocytes ultimately caused cardiac injury and dysfunction in mice. Our findings assist in the elucidation of the potential subacute cardiotoxicity of Y3+ and its underlying mechanisms.
Collapse
Affiliation(s)
- Liang Xiong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China; School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China; Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China
| | - Jinyu Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China
| | - Chunmei Wu
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China
| | - Qiong Yuan
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China; School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China
| | - Sihui Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China; School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China
| | - Liye Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China; School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China
| | - Zilu Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China
| | - Ziyue Sun
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China
| | - Yi Fang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China
| | - Weisong Li
- Department of Pathology, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China
| | - Gonghua Hu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China; School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China; Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China.
| |
Collapse
|
2
|
Petrova E, Gluhcheva Y, Pavlova E, Vladov I, Dorkov P, Schaier M, Pashkunova-Martic I, Helbich TH, Keppler B, Ivanova J. Effects of Salinomycin and Deferiprone on Lead-Induced Changes in the Mouse Brain. Int J Mol Sci 2023; 24:ijms24032871. [PMID: 36769197 PMCID: PMC9918121 DOI: 10.3390/ijms24032871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Lead (Pb) is a highly toxic heavy metal that has deleterious effects on the central nervous system. This study aimed to investigate the effects of salinomycin (Sal) and deferiprone (DFP) on brain morphology and on the content of some essential elements in Pb-exposed mice. Adult male Institute of Cancer Research (ICR) mice were exposed to a daily dose of 80 mg/kg body weight ( b.w.) Pb(II) nitrate for 14 days and subsequently treated with Sal (16 mg/kg b.w.) or DFP (19 mg/kg b.w.) for another 14 days. At the end of the experimental protocol, the brains were processed for histological and inductively coupled plasma mass spectrometry (ICP-MS) analyses. Pb exposure resulted in a 50-fold increase in Pb concentration, compared with controls. Magnesium (Mg) and phosphorus (P) were also significantly increased by 22.22% and 17.92%, respectively. The histological analysis of Pb-exposed mice revealed brain pathological changes with features of neuronal necrosis. Brain Pb level remained significantly elevated in Sal- and DFP-administered groups (37-fold and 50-fold, respectively), compared with untreated controls. Treatment with Sal significantly reduced Mg and P concentrations by 22.56% and 18.38%, respectively, compared with the Pb-exposed group. Administration of Sal and DFP ameliorated brain injury in Pb-exposed mice and improved histological features. The results suggest the potential application of Sal and DFP for treatment of Pb-induced neurotoxicity.
Collapse
Affiliation(s)
- Emilia Petrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria
| | - Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria
| | - Ekaterina Pavlova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria
| | - Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria
| | - Peter Dorkov
- Chemistry Department, Research and Development, BIOVET JSC, 39 Peter Rakov Street, 4550 Peshtera, Bulgaria
| | - Martin Schaier
- Institute of Analytical Chemistry, University of Vienna, 38 Waehringer Strasse, 1090 Vienna, Austria
| | - Irena Pashkunova-Martic
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna and General Hospital of Vienna, 18–20 Waehringer Guertel, 1090 Vienna, Austria
| | - Thomas H. Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna and General Hospital of Vienna, 18–20 Waehringer Guertel, 1090 Vienna, Austria
| | - Bernhard Keppler
- Institute of Inorganic Chemistry, University of Vienna, 42 Waehringer Strasse, 1090 Vienna, Austria
| | - Juliana Ivanova
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, Kozjak Str. 1, 1407 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-281-61-247; Fax: +359-2-962-4771
| |
Collapse
|
3
|
Wang H, Yao Q, Zhu W, Yang Y, Gao C, Han C, Chu X. Biomimetic Antidote Nanoparticles: a Novel Strategy for Chronic Heavy Metal Poisoning. AAPS PharmSciTech 2022; 24:12. [PMID: 36451071 DOI: 10.1208/s12249-022-02466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic lead poisoning has become a major factor in global public health. Chelation therapy is usually used to manage lead poisoning. Dimercaptosuccinic acid (DMSA) is a widely used heavy metal chelation agent. However, DMSA has the characteristics of poor water solubility, low oral bioavailability, and short half-life, which limit its clinical application. Herein, a long-cycle slow-release nanodrug delivery system was constructed. We successfully coated the red blood cell membrane (RBCM) onto the surface of dimercaptosuccinic acid polylactic acid glycolic acid copolymer (PLGA) nanoparticles (RBCM-DMSA-NPs), which have a long cycle and detoxification capabilities. The NPs were characterized and observed by particle size meters and transmission electron microscopy. The results showed that the particle size of RBCM-DMSA-NPs was approximately 146.66 ± 2.41 nm, and the zeta potential was - 15.34 ± 1.60 mV. The homogeneous spherical shape and clear core-shell structure of the bionic nanoparticles were observed by transmission electron microscopy. In the animal tests, the area under the administration time curve of RBCM-DMSA-NPs was 156.52 ± 2.63 (mg/L·h), which was 5.21-fold and 2.36-fold that of free DMSA and DMSA-NPs, respectively. Furthermore, the median survival of the RBCM-DMSA-NP treatment group (47 days) was 3.61-fold, 1.32-fold, and 1.16-fold for the lead poisoning group, free DMSA, and DMSA-NP groups, respectively. The RBCM-DMSA-NP treatment significantly extended the cycle time of the drug in the body and improved the survival rate of mice with chronic lead poisoning. Histological analyses showed that RBCM-DMSA-NPs did not cause significant systemic toxicity. These results indicated that RBCM-DMSA-NPs could be a potential candidate for long-term chronic lead exposure treatment.
Collapse
Affiliation(s)
- Hao Wang
- College of Pharmacy, Qiqihar Medical University, 161006, Qiqihar, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qing Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, 161006, Qiqihar, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Cuiyan Han
- College of Pharmacy, Qiqihar Medical University, 161006, Qiqihar, China.
| | - Xiaoyang Chu
- Department of Stomatology, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 10071, China.
| |
Collapse
|
4
|
Gluhcheva Y, Pashkunova-Martic I, Schaier M, Vladov I, Stoykova S, Petrova E, Pavlova E, Dorkov P, Helbich TH, Keppler B, Ivanova J. Comparative Effects of Deferiprone and Salinomycin on Lead-Induced Disturbance in the Homeostasis of Intrarenal Essential Elements in Mice. Int J Mol Sci 2022; 23:ijms23084368. [PMID: 35457186 PMCID: PMC9027580 DOI: 10.3390/ijms23084368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Lead (Pb) exposure induces severe nephrotoxic effects in humans and animals. Herein, we compare the effects of two chelating agents, salinomycin and deferiprone, on Pb-induced renal alterations in mice and in the homeostasis of essential elements. Adult male mice (Institute of Cancer Research (ICR)) were randomized into four groups: control (Ctrl)—untreated mice administered distilled water for 28 days; Pb-exposed group (Pb)—mice administered orally an average daily dose of 80 mg/kg body weight (BW) lead (II) nitrate (Pb(NO3)2) during the first two weeks of the experimental protocol followed by the administration of distilled water for another two weeks; salinomycin-treated (Pb + Sal) group—Pb-exposed mice, administered an average daily dose of 16 mg/kg BW salinomycin for two weeks; deferiprone-treated (Pb + Def) group—Pb-exposed mice, administered an average daily dose of 20 mg/kg BW deferiprone for 14 days. The exposure of mice to Pb induced significant accumulation of the toxic metal in the kidneys and elicited inflammation with leukocyte infiltrations near the glomerulus. Biochemical analysis of the sera revealed that Pb significantly altered the renal function markers. Pb-induced renal toxicity was accompanied by a significant decrease in the endogenous renal concentrations of phosphorous (P), calcium (Ca), copper (Cu) and selenium (Se). In contrast to deferiprone, salinomycin significantly improved renal morphology in Pb-treated mice and decreased the Pb content by 13.62% compared to the Pb-exposed group. There was also a mild decrease in the renal endogenous concentration of magnesium (Mg) and elevation of the renal concentration of iron (Fe) in the salinomycin-treated group compared to controls. Overall, the results demonstrated that salinomycin is a more effective chelating agent for the treatment of Pb-induced alterations in renal morphology compared to deferiprone.
Collapse
Affiliation(s)
- Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 25, 1113 Sofia, Bulgaria
| | - Irena Pashkunova-Martic
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna and General Hospital of Vienna, 18-20 Waehringer Guertel, 1090 Vienna, Austria
| | - Martin Schaier
- Institute of Analytical Chemistry, University of Vienna, 38 Waehringer Strasse, 1090 Vienna, Austria
| | - Ivelin Vladov
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 25, 1113 Sofia, Bulgaria
| | - Silviya Stoykova
- Faculty of Chemistry and Pharmacy, Sofia University "St. Kliment Ohridski", 1 J. Bourchier Blvd., 1164 Sofia, Bulgaria
| | - Emilia Petrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 25, 1113 Sofia, Bulgaria
| | - Ekaterina Pavlova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 25, 1113 Sofia, Bulgaria
| | - Peter Dorkov
- Chemistry Department, Research and Development, BIOVET JSC, 39 Peter Rakov Street, 4550 Peshtera, Bulgaria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna and General Hospital of Vienna, 18-20 Waehringer Guertel, 1090 Vienna, Austria
| | - Bernhard Keppler
- Institute of Inorganic Chemistry, University of Vienna, 42 Waehringer Strasse, 1090 Vienna, Austria
| | - Juliana Ivanova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1 Kozjak Street, 1407 Sofia, Bulgaria
| |
Collapse
|
5
|
Qi D, Liu Y, Li J, Huang JH, Hu X, Wu E. Salinomycin as a potent anticancer stem cell agent: State of the art and future directions. Med Res Rev 2021; 42:1037-1063. [PMID: 34786735 PMCID: PMC9298915 DOI: 10.1002/med.21870] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells within a tumor that can both self‐renew and differentiate into other cell types forming the heterogeneous tumor bulk. Since CSCs are involved in all aspects of cancer development, including tumor initiation, cell proliferation, metastatic dissemination, therapy resistance, and recurrence, they have emerged as attractive targets for cancer treatment and management. Salinomycin, a widely used antibiotic in poultry farming, was identified by the Weinberg group as a potent anti‐CSC agent in 2009. As a polyether ionophore, salinomycin exerts broad‐spectrum activities, including the important anti‐CSC function. Studies on the mechanism of action of salinomycin against cancer have been continuously and rapidly published since then. Thus, it is imperative for us to update its literature of recent research findings in this area. We here summarize the notable work reported on salinomycin's anticancer activities, intracellular binding target(s), effects on tumor microenvironment, safety, derivatives, and tumor‐specific drug delivery; after that we also discuss the translational potential of salinomycin toward clinical application based on current multifaceted understandings.
Collapse
Affiliation(s)
- Dan Qi
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA
| | - Yunyi Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Juan Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Jason H Huang
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA
| | - Xiaoxiao Hu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China.,Shenzhen Research Institute, Hunan University, Shenzhen, Guangdong, China
| | - Erxi Wu
- Department of Neurosurgery, Baylor Scott & White Health, Temple, Texas, USA.,Neuroscience Institute, Baylor Scott & White Health, Temple, Texas, USA.,Department of Surgery, Texas A&M University College of Medicine, Temple, Texas, USA.,LIVESTRONG Cancer Institutes and Department of Oncology, Dell Medical School, The University of Texas at Austin, Austin, Texas, USA.,Department of Pharmaceutical Sciences, Texas A&M University College of Pharmacy, College Station, Texas, USA
| |
Collapse
|
6
|
Ben Chabchoubi I, Bouguerra S, Ksibi M, Hentati O. Health risk assessment of heavy metals exposure via consumption of crops grown in phosphogypsum-contaminated soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1953-1981. [PMID: 33216311 DOI: 10.1007/s10653-020-00777-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
The management of phosphogypsum (PG) heap, located south of the Sfax city in Tunisia, has been going on for decades. But dumping this solid waste still poses environmental problems. Even though valorized as amendment to agriculture soils, the sanitary impact of this practice is not seriously considered. To assess the risk of the transference of contaminants from PG to agricultural soil-plants food chain, a wild plant species Salicornia arabica grown in PG-contaminated field and tomato (Lycopersicon esculentum) and oat (Avena sativa) grown in laboratory using different rates (10, 20 and 30%) of PG amendment, were tested. The cadmium, lead, chromium, nickel, copper and zinc concentrations in soils and plants were determined by atomic absorption spectrometry and by inductively coupled plasma-mass spectrometry, respectively. Measurements showed that Ni, Cu and Pb levels in the amended soils were below international standards except for Cd and Cr which exceeded Chinese, FAO/WHO and European allowable standard limits. Gathered results showed that the more the PG rate increases, the more the bioconcentration factors of heavy metals increased in plants, particularly in the roots. This is a prospective study assuming direct or indirect exposure scenario of different human cohorts by consuming varied common food stuffs. The Human Exposure to Soil Pollutants evaluation and United State Environment Protection Agency models were adopted for the hazard quotient calculation to assess the acceptability of sanitary risk related to each metal. The direct and indirect health risk assessments varied in the decreasing order: children, adolescents and then adults. Therefore, the PG amendment must not exceed the rate of 10%.
Collapse
Affiliation(s)
- Imen Ben Chabchoubi
- Institut Supérieur de Biotechnologie de Monastir, Université de Monastir, Rue Taher Haddad, 5000, Monastir, Tunisia
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3,5, B.P. 1173, 3038, Sfax, Tunisia
| | - Sirine Bouguerra
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3,5, B.P. 1173, 3038, Sfax, Tunisia
- GreenUPorto - Sustainable Agrifood Production Research Center, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, s/n, 4169-007, Porto, Portugal
| | - Mohamed Ksibi
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3,5, B.P. 1173, 3038, Sfax, Tunisia
- Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Route de Soukra, Km 4,5, B.P. 1175, 3038, Sfax, Tunisia
| | - Olfa Hentati
- Laboratoire Génie de l'Environnement et Ecotechnologie (GEET), Ecole Nationale d'Ingénieurs de Sfax (ENIS), Route de Soukra, Km 3,5, B.P. 1173, 3038, Sfax, Tunisia.
- Institut Supérieur de Biotechnologie de Sfax, Université de Sfax, Route de Soukra, Km 4,5, B.P. 1175, 3038, Sfax, Tunisia.
| |
Collapse
|
7
|
Pavlova E, Pashkunova-Martic I, Schaier M, Petrova E, Gluhcheva Y, Dorkov P, Helbich TH, Keppler B, Koellensperger G, Ivanova J. Ameliorative effects of deferiprone and tetraethylammonium salt of salinomycinic acid on lead-induced toxicity in mouse testes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6784-6795. [PMID: 33006102 DOI: 10.1007/s11356-020-10960-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
In this study, we compare the effects of deferiprone (Def) and tetraethylammonium salt of salinomycinic acid (Sal) on lead (Pb)-induced toxicity in testes of Pb-exposed mice. Mature male ICR mice were allocated into four groups as follows: untreated control mice (ctrl)-received distilled water for 4 weeks; Pb-exposed mice (Pb)-subjected to 14-day Pb (II) nitrate administration at dose 80 mg/kg body weight (b.w.); Pb + Def group-Pb-exposed mice, treated with 20 mg/kg b.w. Def for 2 weeks; and Pb + Sal group-Pb-intoxicated mice, treated with 16 mg/kg b.w. Sal for 14 days. The results demonstrated that Pb exposure significantly increased blood and testicular Pb concentrations, decreased testicular calcium (Ca) content, significantly elevated testicular levels of magnesium (Mg), zinc (Zn), and selenium (Se) but did not significantly affect the endogenous contents of phosphorous (P) and iron (Fe) compared with untreated controls. Pb intoxication induced disorganization of the seminiferous epithelium. Def or Sal administration reduced blood Pb and testicular Pb concentrations in Pb-exposed mice compared with the Pb-intoxicated group. Mg, Zn, and Se concentrations in testes of Pb-exposed mice, treated with Def or Sal, remained higher compared with the untreated controls. Sal significantly increased testicular P concentration compared with untreated controls and significantly elevated the testicular Ca and Fe concentrations compared with the toxic control group. Both chelating agents improved testicular morphology to a great extent. The results demonstrate the potential of both compounds as antidotes for treatment of Pb-induced impairment of male reproductive function.
Collapse
Affiliation(s)
- Ekaterina Pavlova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Irena Pashkunova-Martic
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna and General Hospital of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Martin Schaier
- Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Emilia Petrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Yordanka Gluhcheva
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, 1113, Sofia, Bulgaria
| | - Peter Dorkov
- Chemistry Department, R&D, BIOVET JSC, 39 Peter Rakov Str, 4550, Peshtera, Bulgaria
| | - Thomas H Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Molecular and Structural Preclinical Imaging, Medical University of Vienna and General Hospital of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Bernhard Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Juliana Ivanova
- Faculty of Medicine, Sofia University "St. Kliment Ohridski", Kozjak Str., 1, 1407, Sofia, Bulgaria.
| |
Collapse
|