1
|
Baia-da-Silva DC, Mendes PFS, Silva DCBD, Chemelo VS, Bittencourt LO, Padilha PM, Oriá RB, Aschner M, Lima RR. What does scientometry tell us about mercury toxicology and its biological impairments? Heliyon 2024; 10:e27526. [PMID: 38586377 PMCID: PMC10998116 DOI: 10.1016/j.heliyon.2024.e27526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Mercury is a toxic pollutant that poses risks to both human and environmental health, making it a pressing public health concern. This study aimed to summarize the knowledge on mercury toxicology and the biological impairments caused by exposure to mercury in experimental studies and/or diagnosis in humans. The research was conducted on the main collection of Web of Science, employing as a methodological tool a bibliometric analysis. The selected articles were analyzed, and extracted data such as publication year, journal, author, title, number of citations, corresponding author's country, keywords, and the knowledge mapping was performed about the type of study, chemical form of mercury, exposure period, origin of exposure, tissue/fluid of exposure measurement, mercury concentration, evaluation period (age), mercury effect, model experiments, dose, exposure pathway, and time of exposure. The selected articles were published between 1965 and 2021, with Clarkson TW being the most cited author who has also published the most articles. A total of 38% of the publications were from the USA. These studies assessed the prenatal and postnatal effects of mercury, emphasizing the impact of methylmercury on neurodevelopment, including motor and cognitive evaluations, the association between mercury and autism, and an evaluation of its protective effects against mercury toxicity. In observational studies, the blood, umbilical cord, and hair were the most frequently used for measuring mercury levels. Our data analysis reveals that mercury neurotoxicology has been extensively explored, but the association among the outcomes evaluated in experimental studies has yet to be strengthened. Providing metric evidence on what is unexplored allows for new studies that may help governmental and non-governmental organizations develop guidelines and policies.
Collapse
Affiliation(s)
- Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Paulo Fernando Santos Mendes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Diane Cleydes Baia da Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Victória Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Pedro Magalhães Padilha
- School of Veterinary Medicine and Animal Science, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Reinaldo Barreto Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
2
|
Chemelo VS, Bittencourt LO, Nascimento PC, Paiva MF, Delbem ACB, Pessan JP, do Espírito Santo AR, Albuquerque ARL, Angélica RS, Crespo-Lopez ME, Pessanha S, Aschner M, Lima RR. Maternal methylmercury exposure during early-life periods adversely affects mature enamel structure of offspring rats at human exposure levels: a concern for oral health. Front Public Health 2023; 11:1183308. [PMID: 37457266 PMCID: PMC10348892 DOI: 10.3389/fpubh.2023.1183308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/15/2023] [Indexed: 07/18/2023] Open
Abstract
Although there are many studies on the health effects of methylmercury (MeHg) toxicity during in utero and early development, little is known about its effects on mineralized tissues present in the oral cavity, such as enamel structure. Therefore, this study evaluated the effects of MeHg exposure on the physico-chemical, ultrastructural and functional properties of mature tooth enamel. Specifically, we studied offspring of mothers exposed to MeHg during the prenatal and postnatal periods which are the developmental stages associated with tooth enamel formation. Female rats were exposed to MeHg at a dose of 40 μg/kg/day for 42 days of pregnancy and lactation. The enamel of offspring was analyzed by (1) Fourier Transform Infrared Spectroscopy and Raman to assess physicochemical composition, (2) Scanning Electron Microscopy for ultrastructural evaluation, (3) Transmitted Polarizing Light Microscopy for analysis of the enamel extracellular matrix, and (4) resistance and hardness were evaluated by microhardness. The results showed that MeHg exposure during this sensitive enamel formation period induced changes in inorganic and organic content and enamel prisms ultrastructure alterations and disturbed the organic extracellular matrix due to a decreased enamel strength. These novel findings establish for the first time that maternal exposure to MeHg pre and postnatal promoted relevant changes in mature enamel of their offspring rats.
Collapse
Affiliation(s)
- Victória Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Mayra Frasson Paiva
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Alberto Carlos Botazzo Delbem
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Alexandre Ribeiro do Espírito Santo
- Laboratory of Histotechnology and Tissue Biology, Department of Biomorphology, Institute of Health Sciences, Federal University of Bahia (UFBA), Salvador, Bahia, Brazil
| | | | - Rômulo Simões Angélica
- Laboratory of X-Ray Diffraction, Institute of Geosciences, Federal University of Pará, Belém, Pará, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| | - Sofia Pessanha
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics, NOVA School of Science and Technology, Caparica, Portugal
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém, Pará, Brazil
| |
Collapse
|
3
|
Matos-Sousa JM, Bittencourt LO, Ferreira MKM, dos Santos VRN, Balbinot KM, Alves-Júnior S, Pinheiro JDJV, Charone S, Pessan JP, Lima RR. Fluoride Exposure and Salivary Glands: How Is Glandular Morphology Susceptible to Long-Term Exposure? A Preclinical Study. J Clin Med 2022; 11:jcm11185373. [PMID: 36143018 PMCID: PMC9501535 DOI: 10.3390/jcm11185373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022] Open
Abstract
Despite a strong body of evidence attesting to the effectiveness of fluoride (F) in preventing and controlling caries, some studies have sought to investigate the influence of F exposure on the salivary glands, organs that are essential for the maintenance of cavity homeostasis through salivary production, finding that exposure to F can cause biochemical and proteomic changes. Thus, this study aimed to investigate the morphological effects of prolonged exposure to F on the salivary glands of mice, at concentrations that would correspond to optimally fluoridated water (suitable for human consumption) and to fluorosis-endemic regions. Twenty-four male mice (Mus musculus) were divided into three groups, according to F levels in the drinking water: 0 (control), 10, or 50 mg F/L, with an exposure period of 60 days. The glands were morphometrically analyzed for the total acinar area, parenchyma area, and stromal area, as well as for the immunohistochemical analysis of myoepithelial cells. The results showed that prolonged exposure to F at 10 mg F/L did not promote significant changes in the morphometry of the salivary glands of mice, which reinforces the safety of the chronic use of F in low doses.
Collapse
Affiliation(s)
- José Mário Matos-Sousa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Maria Karolina Martins Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Vinicius Ruan Neves dos Santos
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | - Sérgio Alves-Júnior
- School of Dentistry, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | - Senda Charone
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Juliano Pelim Pessan
- Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University, Araçatuba 14801-385, SP, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Correspondence:
| |
Collapse
|
4
|
Methylmercury Causes Neurodegeneration and Downregulation of Myelin Basic Protein in the Spinal Cord of Offspring Rats after Maternal Exposure. Int J Mol Sci 2022; 23:ijms23073777. [PMID: 35409136 PMCID: PMC8998727 DOI: 10.3390/ijms23073777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Methylmercury (MeHg) is one of the most dangerous toxic pollutants spread throughout the earth. Chronic MeHg intoxication by contaminated food ingestion is the most common threat to human health, including impairment to the developing fetus. The present study aims at investigating the effects of maternal exposure to MeHg during gestation and lactation on the spinal cord of offspring. Pregnant rats received oral doses of MeHg (40 μg/kg/day) over a period of 42 days (21 gestation and 21 lactation). Control animals received the vehicle only. Total mercury concentration was measured in blood samples from offspring collected at the 41st postnatal day. Counting of motor neurons and immunoreactivity for myelin basic protein (MBP) were assessed in the spinal cords in both control and MeHg-intoxicated animals. Our results showed that MeHg promoted an increase in blood Hg levels. In addition, it caused a reduction in the number of spinal cord motor neurons as well as decreased MBP immunoreactivity in the cervical, thoracic and lumbar segments. Our present findings suggest that MeHg intoxication during rat pregnancy and lactation is associated with a pattern of motor neuron degeneration and downregulation of myelin basic protein in different segments of a developing spinal cord. Further studies are needed to establish the effect of MeHg intoxication in both young and adult rats.
Collapse
|
5
|
Methylmercury exposure during prenatal and postnatal neurodevelopment promotes oxidative stress associated with motor and cognitive damages in rats: an environmental-experimental toxicology study. Toxicol Rep 2022; 9:563-574. [PMID: 35392159 PMCID: PMC8980556 DOI: 10.1016/j.toxrep.2022.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/29/2022] [Accepted: 02/25/2022] [Indexed: 12/11/2022] Open
Abstract
The environmental contamination by methylmercury (MeHg) is a major concern for public health. The effects of MeHg in the central nervous system (CNS) of adult animals have been extensively investigated; however, little is known about the effects of MeHg exposure during intrauterine and lactation periods on motor and cognitive functions of adolescent rats. Therefore, this study aimed to investigate the effect of MeHg exposure during intrauterine life and lactation on both motor and cognitive functions of offspring rats. Ten female Wistar rats were exposed to 40 μg/kg/day of MeHg through cookie treats from the first day of pregnancy until the last day of breastfeeding. Both motor and cognitive functions of offspring male rats were assessed by open field, rotarod, and step-down inhibitory avoidance tests. Forty-one days after birth, the hippocampus and cerebellum were collected to determine total Hg content, antioxidant capacity against peroxyl radicals (ACAP), reduced glutathione (GSH) levels, lipid peroxidation (LPO), and nitrite levels. MeHg exposure during CNS development increased Hg levels in both hippocampal and cerebellar parenchymas, triggered oxidative stress throughout ACAP and GSH decrease, increased LPO and nitrite levels. These alterations resulted in reduced spontaneous and stimulated locomotion and short- and long-term memory deficits. Therefore, damages triggered by MeHg exposure during intrauterine life and lactation had detrimental effects on oxidative biochemistry and motor and cognitive functions of offspring rats. The MeHg exposure during CNS development increased mercury levels in hippocampal and cerebellar parenchyma. The MeHg intoxication during pregnancy and lactation impairs the redox status of hippocampus and cerebellum of the offspring. MeHg exposure causes behavioral effects in motor ability and cognition of offspring rats.
Collapse
|