1
|
Sharma M, Khan FH, Mahmood R. Esculin mitigates nickel chloride-induced generation of ROS, hemoglobin oxidation, and alterations in redox status in human red blood cells. J Trace Elem Med Biol 2025; 88:127626. [PMID: 40037000 DOI: 10.1016/j.jtemb.2025.127626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 01/20/2025] [Accepted: 02/23/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Nickel (Ni) is a heavy metal and an environmental pollutant that is harmful to humans because of its carcinogenicity and toxic effects on several tissues and organs. Due to their widespread use concerns have been raised about the potential adverse effects of Ni and its compounds on human health. Ni compounds induce oxidative stress in cells by modifying the redox equilibrium. This work studied the protective role of the plant antioxidant esculin (ES) against nickel chloride (NiCl2)-induced oxidative damage and cytotoxicity in isolated human red blood cells (RBC). METHODS Human RBC were first incubated with varying concentrations of ES (0.25-1.0 mM) for 2 h at 37 °C, followed by addition of 0.5 mM NiCl2 and further incubation for 24 h at 37 °C. RESULTS Treatment of RBC with NiCl2 alone increased the production of reactive oxygen species and significantly enhanced methemoglobin level, heme degradation, free iron release and hydrogen peroxide content. It also led to oxidation of cellular thiol groups, proteins and lipids. The glutathione content, total sulfhydryl groups, nitric oxide level and free amino groups were decreased. The activities of antioxidant, metabolic and plasma membrane enzymes were inhibited and the antioxidant capacity of RBC was lowered. However, pre-incubation of RBC with ES greatly mitigated the NiCl2-induced alterations in these parameters in an ES concentration-dependent manner. In all cases ES alone did not exhibit any significant toxic effect. This was confirmed by electron microscopic analysis of RBC. Treatment with NiCl2 alone resulted in the conversion of biconcave discoidal RBC to echinocytes but this change in cell morphology was greatly prevented in the presence of ES. The ES alone treated RBC did not show altered cell morphology. CONCLUSION These results suggest that ES can be potentially used as a cytoprotectant against Ni-induced toxicity.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, UP 202002, India.
| |
Collapse
|
2
|
El Brouzi MY, Adadi N, Lamtai M, Boulahfa H, Zghari O, Fath N, Rezqaoui A, El Hamzaoui A, Njimat S, El Hessni A, Mesfioui A. Effects of Nickel Bioaccumulation on Hematological, Biochemical, Immune Responses, Neuroinflammatory, Oxidative Stress Parameters, and Neurotoxicity in Rats. Biol Trace Elem Res 2025:10.1007/s12011-025-04528-x. [PMID: 39891830 DOI: 10.1007/s12011-025-04528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
Nickel (Ni) exposure is linked to numerous health issues, including dermatitis, immunotoxicity, and cancer. Emerging evidence suggests Ni may cross the blood-brain barrier, accumulating in the brain and causing neuroinflammation, oxidative stress, and neuronal apoptosis. Herein, we investigated the effect of Ni exposure through the intraperitoneal route, studying the Ni effect in subacute and chronic toxicity, on various health parameters in Wistar rats. Rats were randomly divided into four groups (n = 10 per group): two groups received a daily intraperitoneal injection of NiCl₂ at a dose of 0.25 mg/kg for subacute (21 days) or chronic (60 days) exposure periods, while the other two groups were treated with NaCl solution (0.9%) as a control for equivalent durations. The study assessed behavioral, biochemical, hematological, immunological, neurobiochemical, and histopathological effects over 21 and 60 days. Neurobehavioral tests, blood and tissue analyses, and organ examinations were conducted. This study demonstrates that Ni bioaccumulation in subacute and chronic exposure has significant health impacts in Wistar rats, including hematological, immunological, biochemical, AchE activity, neuroinflammatory, oxidative stress, and neurobehavioral changes. Chronic exposure results in higher Ni accumulation, particularly in the brain, causing neurotoxicity, inflammation, and behavioral disorders such as anxiety, depression, and memory impairment. The findings highlight the importance of limiting Ni exposure to prevent adverse health effects.
Collapse
Affiliation(s)
- Mohamed Yassine El Brouzi
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco.
| | - Najlae Adadi
- Higher Institute of Nursing and Health Professions of Dakhla, Dakhla, Morocco
| | - Mouloud Lamtai
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Hafsa Boulahfa
- Laboratory of Biology and Health, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Oussama Zghari
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Nada Fath
- Compared Anatomy Unit, School of Veterinary Medicine, Hassan II Institute of Agronomy and Veterinary Medicine, Rabat, Morocco
- Physiology and Pathophysiology Laboratory, Department of Biology, Faculty of Sciences, Mohamed V University, Rabat, Morocco
| | - Ayoub Rezqaoui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Abdelghafour El Hamzaoui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Smail Njimat
- Laboratory of Materials, Electrochemistry and Environment, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
| | - Aboubaker El Hessni
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Biology and Health, Neurosciences, Neuro-Immunology and Behaviour Unit, Faculty of Science, Ibn Tofail University, Kenitra, Morocco
| |
Collapse
|
3
|
Zhang K, Yang C, Zhao X, Wang Y, Gu Z, Yang R, Ding H, Li S, Qin J, Chu X. Associations of Urinary Nickel with NAFLD and Liver Fibrosis in the USA: A Nationwide Cross‑Sectional Study. Biol Trace Elem Res 2025; 203:30-38. [PMID: 38514508 DOI: 10.1007/s12011-024-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Despite the robust correlation between metabolic disorders and heavy metals, there has been limited research on the associations between nickel levels and non-alcoholic fatty liver disease (NAFLD) as well as liver fibrosis. This study aimed to examine the associations among urinary nickel, NAFLD, and liver fibrosis. The data utilized in this study were obtained from the National Health and Nutrition Examination Survey 2017-2020. A comprehensive screening process was conducted, resulting in the inclusion of a total of 3169 American adults in the analysis. The measurement of urinary nickel was conducted through inductively coupled-plasma mass spectrometry. Vibration-controlled transient elastography was employed to assess the controlled attenuation parameter and liver stiffness measurement as indicators for NAFLD and liver fibrosis, respectively. Multivariable logistic regression models were employed to evaluate the associations among urinary nickel, NAFLD, and liver fibrosis. Restricted cubic splines were employed to explored the nonlinear associations. After adjusting for all covariates, the correlation between the highest quartile of urinary nickel and NAFLD was found to be significant (OR = 1.65; 95% CI, 1.19-2.27). Subgroup analysis revealed that the correlation was significant only in men. A significant association occurred between the second quartile of urinary nickel and liver fibrosis (OR 1.88; 95% CI, 1.22-2.90). Restricted cubic spline showed that the relationship was linear between urinary nickel and NAFLD and non-monotonic, inverse U-shaped between urinary nickel and liver fibrosis. This cross-sectional study indicated that the risk of NAFLD is associated with urinary nickel, and this correlation was only present among males.
Collapse
Affiliation(s)
- Kening Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Chunxiao Yang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Xue Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Yuanyuan Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Zhuo Gu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Ruiming Yang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Haiyan Ding
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Shuangshuang Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Jian Qin
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China
| | - Xia Chu
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, No.157 Baojian Road, Nangang District, Heilongjiang Province, Harbin, 150081, China.
- Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
4
|
Xie L, Guan X, Zhou Y, He Y, Chen S, Xiao W, Yang J, Lu J, Hong L, Hu Q, Wang Q, Li C, Wang Q. Exploring Associations and Mediating Factors between Multiple Trace Metals with Anemia in US Adults: Insight from NHANES 2017-2020. Nutrients 2024; 16:3424. [PMID: 39408389 PMCID: PMC11478990 DOI: 10.3390/nu16193424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Anemia significantly contributes to the global disease burden, with its incidence potentially influenced by the trace metal content within the body. OBJECTIVE This study aims to examine the associations between trace metals and anemia risk, with a particular focus on investigating the potential mediating roles of iron status and inflammation in these associations. METHODS Five trace metals (Ni, Co, Mn, Se, and Mo) were examined in 1274 US adults, utilizing data from the National Health and Nutrition Examination Survey (NHANES) 2017-2020. The individual and combined effects of these metals on anemia were assessed using logistic regression, quantile g-computation (QGC), and Bayesian kernel machine regression (BKMR). A sex-stratified analysis was conducted to discern any gender-specific susceptibilities. Additionally, mediation analysis was employed to explore the potential mediating roles of iron status and inflammation in the associations between these metals and anemia. RESULTS Increased risks of anemia were positively associated with Co and Ni levels but negatively correlated with Se and Mn levels (all with p < 0.05). The trace metal mixture was negatively associated with anemia, with the highest weights of Co and Se in different directions in both the QGC and BKMR models. In the sex-specific analysis, we observed less pronounced protective effects from trace metals in females. Moreover, the mediating proportion of the iron status and inflammation in these relationships ranged from 10.29% to 58.18%. CONCLUSION Our findings suggest that the trace element mixture was associated with decreased anemia risk, among which Se was a protective factor while Co was a risk factor, and females were more susceptible. The effects of these trace metals on anemia may be mediated by the iron status and inflammation.
Collapse
Affiliation(s)
- Lijie Xie
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xinchao Guan
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yixiang Zhou
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yujie He
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Shilin Chen
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wanting Xiao
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Public Health Service Center, Bao’an District, Shenzhen 518126, China
| | - Jilong Yang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- Public Health Service Center, Bao’an District, Shenzhen 518126, China
| | - Jianyong Lu
- Public Health Service Center, Bao’an District, Shenzhen 518126, China
| | - Liecheng Hong
- Public Health Service Center, Bao’an District, Shenzhen 518126, China
| | - Qiansheng Hu
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Chuanwen Li
- Public Health Service Center, Bao’an District, Shenzhen 518126, China
| | - Qing Wang
- School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
5
|
Liao T, Ni F, Yang X, Liu J, Xia L, Yang Q, Gao X, Li C, Wang X, Wu C, Wang L, Bao S, Pan G, Liang C, Jiang H, Tao F, Shao S. Couples' preconception urinary essential trace elements concentration and spontaneous abortion risk: A nested case-control study in a community population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116764. [PMID: 39067081 DOI: 10.1016/j.ecoenv.2024.116764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Previous studies have indicated a correlation between maternal imbalances in essential trace elements during pregnancy and the occurrence of spontaneous abortion (SA). Nonetheless, the impact of these elements from both partners and during the preconception period remains unexplored. OBJECTIVE This study sought to evaluate the relationship between preconception essential trace elements and spontaneous abortion (SA) based on husband-wife dyads. METHODS This study selected 390 couples with spontaneous abortion (SA) and 390 matched couples with live births from a preconception cohort of 33,687 couples. Urine samples collected prior to pregnancy were analyzed for ten essential trace elements (Se, Cr, Mo, Cu, Zn, Fe, Mn, V, Co, and Ni) using inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Multivariate conditional logistic regression analysis identified that elevated concentrations of Zn (OR = 0.73) and Ni (OR = 0.69) in couples were associated with a reduced risk of SA, whereas elevated levels of Cr (OR = 1.30) and Mn (OR = 1.39) were linked to an increased risk. Restricted cubic spline models suggested a U-shaped association between couples' Cu and Co concentrations and SA. Bayesian Kernel Machine Regression further supported a U-shaped relationship between the mixture of ten elements and SA, showing significant protection at the 50th and 55th percentiles compared to the 10th percentile. Additionally, the effects of Cr, Zn, Mn, and Ni on SA varied when the concentrations of the other nine elements were held constant at their 25th, 50th, and 75th percentiles. Stratified analysis revealed that maternal Cu (OR = 0.43) and Fe (OR = 0.63) reduced the risk of SA when paternal Cu and Fe were in the lower quartile. Conversely, maternal Cu (OR = 2.03) and Fe (OR = 1.77) increased the risk of SA when paternal concentrations were in the higher quartile. Similar patterns were observed for Cr, Mn, Co, and Zn. CONCLUSION Elevated urinary concentrations of Zn and Ni in couples were associated with a reduced risk of SA, while higher levels of Cr and Mn were linked to an increased risk. Cu, Co, and a mixture of ten essential trace elements exhibited a U-shaped relationship with SA. The impact of certain essential trace elements (Cu, Fe, Cr, Mn, Co, and Zn) on SA in one partner was influenced by their concentrations in the other partner.
Collapse
Affiliation(s)
- Tierong Liao
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui, China
| | - Feng Ni
- Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army, Hefei, Anhui, China
| | - Xinliu Yang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui, China
| | - Junjun Liu
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui, China
| | - Luobin Xia
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui, China
| | - Qianhui Yang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui, China
| | - Xin Gao
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui, China
| | - Chaojie Li
- NHC Key Laboratory of Birth Defects Prevention, Zhenzhou, Henan, China; Henan Key Laboratory of Population Defects Prevention, Zhenzhou, Henan, China
| | - Xuemei Wang
- Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army, Hefei, Anhui, China
| | - Caiyun Wu
- Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army, Hefei, Anhui, China
| | - Liuchang Wang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shuangshuang Bao
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui, China
| | - Guixia Pan
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui, China
| | - Chunmei Liang
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui, China
| | - Hong Jiang
- Reproductive Medicine Center, the 901th Hospital of the Joint Logistics Support Force of People's Liberation Army, Hefei, Anhui, China.
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, Anhui, China.
| | - Shanshan Shao
- School of Public Health, Anhui Medical University, Hefei, Anhui, China; NHC Key Laboratory of Birth Defects Prevention, Zhenzhou, Henan, China; Henan Key Laboratory of Population Defects Prevention, Zhenzhou, Henan, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
6
|
Sharma M, Khan FH, Mahmood R. Nickel chloride generates cytotoxic ROS that cause oxidative damage in human erythrocytes. J Trace Elem Med Biol 2023; 80:127272. [PMID: 37516010 DOI: 10.1016/j.jtemb.2023.127272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/07/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Nickel is a heavy metal that is regarded as a possible hazard to living organisms due to its toxicity and carcinogenicity. Nickel chloride (NiCl2), an inorganic divalent Ni compound, has been shown to cause oxidative stress in cells by altering the redox equilibrium. We have investigated the effect of NiCl2 on isolated human erythrocytes under in vitro condition. METHODS Isolated erythrocytes were treated with different concentrations of NiCl2 (25-500 µM) for 24 h at 37 ºC. Hemolysates were prepared and several biochemical parameters were analyzed in them. RESULTS Treatment of erythrocytes with NiCl2 enhanced the intracellular generation of reactive oxygen species (ROS). A significant increase in hydrogen peroxide levels and oxidation of proteins and lipids was also seen. This was accompanied by a reduction in levels of nitric oxide, glutathione, free amino groups and total sulfhydryl groups. NiCl2 treatment impaired both enzymatic and non-enzymatic defense systems, resulting in lowered antioxidant capacity and diminished ability of cells to quench free radicals and reduce metal ions. NiCl2 exposure also had an inhibitory effect on the activity of enzymes involved in pathways of glucose metabolism (glycolytic and pentose phosphate shunt pathways). Increased level of methemoglobin, which is inactive in oxygen transport, was also seen. The rate of heme breakdown increased resulting in the release of free iron. Exposure to NiCl2 led to considerable cell lysis, indicating damage to the erythrocyte membrane. This was supported by the inhibition of membrane bound enzymes and increase in the osmotic fragility of NiCl2 treated cells. NiCl2 treatment caused severe morphological alterations with the conversion of normal discocytes to echinocytes. All changes were seen in a NiCl2 concentration-dependent manner. CONCLUSION NiCl2 generates cytotoxic ROS in human erythrocytes which cause oxidative damage that can decrease the oxygen carrying capacity of blood and also lead to anemia.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Riaz Mahmood
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
7
|
Zhang Y, Chu L, Zhou X, Xu T, Shen Q, Li T, Wu Y. Vitamin B12-Induced Autophagy Alleviates High Glucose-Mediated Apoptosis of Islet β Cells. Int J Mol Sci 2023; 24:15217. [PMID: 37894898 PMCID: PMC10607738 DOI: 10.3390/ijms242015217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
High glucose levels can lead to the apoptosis of islet β cells, while autophagy can provide cytoprotection and promote autophagic cell death. Vitamin B12, a water-soluble B vitamin, has been shown to regulate insulin secretion and increase insulin sensitivity. However, the precise mechanism of action remains unclear. In this study, we investigated the influence of vitamin B12 on high glucose-induced apoptosis and autophagy in RIN-m5F cells to elucidate how vitamin B12 modulates insulin release. Our results demonstrate that exposure to 45 mM glucose led to a significant increase in the apoptosis rate of RIN-m5F cells. The treatment with vitamin B12 reduced the apoptosis rate and increased the number of autophagosomes. Moreover, vitamin B12 increased the ratio of microtubule-associated protein 1 light chain 3 beta to microtubule-associated protein 1 light chain 3 alpha (LC3-II/LC3-I), while decreasing the amount of sequestosome 1 (p62) and inhibiting the phosphorylation of p70 ribosomal protein S6 kinase (p70S6K) under both normal- and high-glucose conditions. The additional experiments revealed that vitamin B12 inhibited high glucose-induced apoptosis. Notably, this protective effect was attenuated when the autophagy inhibitor 3-methyladenine was introduced. Our findings suggest that vitamin B12 protects islet β cells against apoptosis induced by high glucose levels, possibly by inducing autophagy.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (L.C.); (X.Z.); (T.X.); (Q.S.)
| | - Ling Chu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (L.C.); (X.Z.); (T.X.); (Q.S.)
| | - Xi’an Zhou
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (L.C.); (X.Z.); (T.X.); (Q.S.)
| | - Tingxia Xu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (L.C.); (X.Z.); (T.X.); (Q.S.)
| | - Qingwu Shen
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (L.C.); (X.Z.); (T.X.); (Q.S.)
| | - Tao Li
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanyang Wu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (L.C.); (X.Z.); (T.X.); (Q.S.)
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
| |
Collapse
|
8
|
Li L, Xu J, Zhang W, Wang Z, Liu S, Jin L, Wang Q, Wu S, Shang X, Guo X, Huang Q, Deng F. Associations between multiple metals during early pregnancy and gestational diabetes mellitus under four statistical models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96689-96700. [PMID: 37578585 DOI: 10.1007/s11356-023-29121-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Gestational diabetes mellitus (GDM) is one of the most common complications of pregnancy. Metal exposure is an emerging factor affecting the risk of GDM. However, the effects of metal mixture on GDM and key metals within the mixture remain unclear. This study was aimed at investigating the association between metal mixture during early pregnancy and the risk of GDM using four statistical methods and further at identifying the key metals within the mixture associated with GDM. A nested case-control study including 128 GDM cases and 318 controls was conducted in Beijing, China. Urine samples were collected before 13 gestational weeks and the concentrations of 13 metals were measured. Single-metal analysis (unconditional logistic regression) and mixture analyses (Bayesian kernel machine regression (BKMR), quantile g-computation, and elastic-net regression (ENET) models) were applied to estimate the associations between exposure to multiple metals and GDM. Single-metal analysis showed that Ni was associated with lower risk of GDM, while positive associations of Sr and Sb with GDM were observed. Compared with the lowest quartile of Ni, the ORs of GDM in the highest quartiles were 0.49 (95% CI 0.24, 0.98). In mixture analyses, Ni and Mg showed negative associations with GDM, while Co and Sb were positively associated with GDM in BKMR and quantile g-computation models. No significant joint effect of metal mixture on GDM was observed. However, interestingly, Ni was identified as a key metal within the mixture associated with decreased risk of GDM by all three mixture methods. Our study emphasized that metal exposure during early pregnancy was associated with GDM, and Ni might have important association with decreased GDM risk.
Collapse
Affiliation(s)
- Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Jialin Xu
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Zhaokun Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Lei Jin
- Institute of Reproductive and Child Health, Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, 710061, Shaanxi, China
| | - Xuejun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, China
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, China
| |
Collapse
|
9
|
Kublay İZ, Koçoğlu ES, Oflu S, Arvas B, Yolaçan Ç, Bakırdere S. Trace nickel determination in seawater matrix using combination of dispersive liquid-liquid microextraction and triethylamine-assisted Mg(OH) 2 method. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:861. [PMID: 37335378 DOI: 10.1007/s10661-023-11435-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023]
Abstract
In order to eliminate the effects of seawater matrix on the precise/accurate determination of elements, new and efficient analytical procedure requires. In this study, co-precipitation method based on the triethylamine (TEA)-assisted Mg(OH)2 was performed to eliminate side-effects of seawater medium on the determination with flame atomic absorption spectrometry (FAAS) prior to the preconcentration of nickel by an optimized dispersive liquid-liquid microextraction (DLLME) method. Under the optimum conditions of the presented method, the limit of detection and quantification (LOD, LOQ) values obtained for nickel were found as 16.1 and 53.8 μg kg-1, respectively. Seawater samples collected from West Antarctic region were used for real sample applications to check the accuracy and applicability of developed method, and satisfying recovery results (86-97%) were obtained. In addition to this, the digital image-based colorimetric detection system and the UV-Vis system were applied to confirm the applicability of the developed DLLME-FAAS method in other analytical systems.
Collapse
Affiliation(s)
- İrem Zehra Kublay
- Chemistry Department, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Türkiye
| | - Elif Seda Koçoğlu
- Central Research Laboratory, Yıldız Technical University, 34220, Istanbul, Türkiye
| | - Sude Oflu
- Chemistry Department, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Türkiye
| | - Büşra Arvas
- Chemistry Department, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Türkiye
| | - Çiğdem Yolaçan
- Chemistry Department, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Türkiye
| | - Sezgin Bakırdere
- Chemistry Department, Faculty of Art and Science, Yıldız Technical University, 34220, Istanbul, Türkiye.
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, Çankaya, 06670, Ankara, Türkiye.
| |
Collapse
|
10
|
Wang GX, Huang BL, Li JT, Fang ZB, Feng LY, Zhao HX, Chu SF, Liu DL, Li HL. Association between urinary nickel with obesity status in adults: A cross-sectional study. Front Public Health 2023; 11:1094062. [PMID: 36875412 PMCID: PMC9982146 DOI: 10.3389/fpubh.2023.1094062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
Objectives The prevalence of obesity is on the rise and is connected to numerous factors. However, the relationship between obesity and nickel has never been investigated. Our study aimed to explore the association between urinary nickel and obesity Status in adults. Methods From the 2017-2018 National Health and Nutrition Examination Surveys (NHANES), 1,705 participants ≥18 years of age were enrolled. To explore further the relationship among urinary nickel, body mass index (BMI), and waist circumference(WC), Weighted multivariate linear regression analyses and further subgroup analyzes were conducted. Results Urinary nickel does not correlate with BMI level but positively correlates with WC. In the subgroup analyzed according to sex, Urinary nickel has a positive correlation with BMI and WC in males but has a negative correlation in females. Secondary stratification analysis according to sex and race, Urinary nickel positively correlates with BMI in White males. It also positively correlates with WC in both White and Black males. Conclusions A correlation was found between urinary nickel levels and BMI and WC in adult males. Adult men, especially those already obese, may need to reduce nickel exposure.
Collapse
Affiliation(s)
- Gao-Xiang Wang
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong, China.,Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Bao-Li Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jun-Tong Li
- Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong, China.,Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Ze-Bin Fang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Le-Yi Feng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Heng-Xia Zhao
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Shu-Fang Chu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - De-Liang Liu
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| | - Hui-Lin Li
- Department of Endocrinology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
11
|
Huang CH, Wang CW, Chen HC, Tu HP, Chen SC, Hung CH, Kuo CH. Gender Difference in the Associations among Heavy Metals with Red Blood Cell Hemogram. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010189. [PMID: 35010453 PMCID: PMC8750598 DOI: 10.3390/ijerph19010189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 05/17/2023]
Abstract
This study aimed to investigate gender differences in the association between heavy metals and hemograms including hemoglobin (Hgb), mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC). A health survey of 2447 participants was conducted in southern Taiwan between June 2016 and September 2018. Seven heavy metals were measured: blood lead (Pb), urine nickel (Ni), urine chromium (Cr), urine manganese, urine arsenic (As), urine copper and urine cadmium (Cd). The results show that in females, Pb and Ni were significantly negatively associated with Hgb. In addition, As and Cd were significantly positively, and Pb and Ni were significantly negatively, associated with MCV, in males and females, respectively. The interactions between gender and Ni and gender and Cd in MCV were statistically significant. Further, Pb, in males, and Pb, Ni and Cr, in females, were significantly negatively associated with MCHC. In conclusion, in females, associations of red blood cell (RBC) hemograms with heavy metals such as Pb and Ni were found. In males, heavy metals such as Pb, As and Cd were found to associate with RBC hemograms. Further research is warranted to discuss the mechanism behind these associations.
Collapse
Affiliation(s)
- Chao-Hsin Huang
- Department of Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chih-Wen Wang
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (C.-W.W.); (H.-C.C.); (C.-H.K.)
- Department of Internal Medicine, Division of Hepatobiliary, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Huang-Chi Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (C.-W.W.); (H.-C.C.); (C.-H.K.)
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (C.-W.W.); (H.-C.C.); (C.-H.K.)
- Department of Internal Medicine, Division of Nephrology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (S.-C.C.); (C.-H.H.)
| | - Chih-Hsing Hung
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
- Correspondence: (S.-C.C.); (C.-H.H.)
| | - Chao-Hung Kuo
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (C.-W.W.); (H.-C.C.); (C.-H.K.)
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Internal Medicine, Division of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|