1
|
Chung SWC. Feasible approaches for arsenic speciation analysis in foods for dietary exposure assessment: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:342-358. [PMID: 39780435 DOI: 10.1080/19440049.2025.2449663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/27/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
Arsenic (As) occurs naturally in different forms and oxidation states. Amongst them, inorganic arsenic (iAs) is classified as both genotoxic and carcinogenic whilst other organic arsenic species are considered less toxic. As in rice is mainly present in the form of iAs which therefore poses a health risk to populations that consume rice as a staple food. In 2011, the Joint Food and Agriculture Organisation/World Health Organisation Expert Committee on Food Additives determined the iAs benchmark dose lower confidence limit for a 0.5% increased incidence of lung cancer in humans (BMDL0.5) which computed to be 3.0 μg/kg body weight (bw)/day. However, the European Food Safety Authority (EFSA) has recently lowered the BMDL0.5 of iAs to 0.06 μg iAs/kg bw per day based on a low risk of bias case-control/cohort study on skin cancer as a Reference Point (RP). Subsequently, EFSA established a BMDL10 of 18.2 mg monomethylarsenic (V) (MMA(V))/kg bw/day and 1.1 mg dimethylarsenic (V) (DMA(V))/kg bw/day as RPs with reference to studies on skin cancer and urinary bladder tumours in rats respectively. Therefore, As speciation is essential when conducting dietary exposure assessment. Recent studies showed thiolated counterparts of MMA and DMA were found in certain foodstuffs, especially grain. However, these thiolated As species were not recognised in acidic, basic or peroxide systems as they transformed to MMA and DMA in these extractants. Therefore, one of the objectives of this review was to assess whether published analytical methods are fit for As speciation analysis, especially for iAs, MMA and DMA, in foodstuffs. Besides, discussion was conducted on whether limits of detection are sufficiently low for dietary exposure assessment with respect to recently established RPs of iAs, MMA and DMA when an upper bound approach is applied. Moreover, possible future research gaps are identified based on current knowledge and existing literature.
Collapse
Affiliation(s)
- Stephen W C Chung
- Department of Food Science and Nutrition, Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
2
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Knutsen HK, Åkesson A, Bampidis V, Bignami M, Bodin L, Chipman JK, Degen G, Hernández‐Jerez A, Hofer T, Hogstrand C, Landi S, Leblanc J, Machera K, Ntzani E, Rychen G, Sand S, Vejdovszky K, Viviani B, Barregård L, Benford D, Dogliotti E, Francesconi K, Gómez Ruiz JÁ, Steinkellner H, Schwerdtle T. Risk assessment of complex organoarsenic species in food. EFSA J 2024; 22:e9112. [PMID: 39655151 PMCID: PMC11626214 DOI: 10.2903/j.efsa.2024.9112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
The European Commission asked EFSA for a risk assessment on complex organoarsenic species in food. They are typically found in marine foods and comprise mainly arsenobetaine (AsB), arsenosugars and arsenolipids. For AsB, no reference point (RP) could be derived because of insufficient toxicity data. AsB did not show adverse effects in the two available repeat dose toxicity tests in rodents. It has not shown genotoxicity in in vitro assays. There is no indication of an association with adverse outcomes in human studies. The highest 95th percentile exposure for AsB was observed in 'Toddlers' with an estimate of 12.5 μg As/kg bw per day (AsB expressed as elemental arsenic). There is sufficient evidence to conclude that AsB at current dietary exposure levels does not raise a health concern. For glycerol arsenosugar (AsSugOH) a RP of 0.85 mg As/kg bw per day was derived based on the BMDL10 values for cognitive and motor function in mice. A margin of exposure (MOE) of ≥ 1000 would not raise a health concern. The highest 95th percentile estimate of exposure for AsSugOH (for adult consumers of red seaweed Nori/Laver) was 0.71 μg As/kg bw per day (AsSugOH expressed as elemental arsenic), which results in an MOE > 1000, not raising a health concern. Based on qualitative consideration of all identified uncertainties, it is regarded likely that the dietary exposures to AsB and AsSugOH do not raise a health concern. No conclusions could be drawn regarding other arsenosugars. No risk characterisation could be conducted for arsenolipids, due to the lack of data.
Collapse
|
3
|
Bhattacharjee S, Chacon-Teran MA, Findlater M, Louie SM, Bailoo JD, Deonarine A. Suspect screening-data independent analysis workflow for the identification of arsenolipids in marine standard reference materials. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.31.610588. [PMID: 39282420 PMCID: PMC11398336 DOI: 10.1101/2024.08.31.610588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
There has been limited research into arsenolipid toxicological risks and health-related outcomes due to challenges with their separation, identification, and quantification within complex biological matrices (e.g., fish, seaweed). Analytical approaches for arsenolipid identification such as suspect screening have not been well documented and there are no certified standard reference materials, leading to issues with reproducibility and uncertainty regarding the accuracy of results. In this study, a detailed workflow for the identification of arsenolipids utilizing suspect screening coupled with data independent analysis is presented and applied to three commercially available standard reference materials (Hijiki seaweed, dogfish liver, and tuna). Hexane and dichloromethane/methanol extraction, followed by reversed-phase high-performance liquid chromatography-inductively coupled plasma mass spectrometry and liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry. Using the workflow developed, mass fragmentation matching, mass error calculations, and retention time matching were performed to identify suspect arsenolipids. Arseno-fatty acids (AsFAs), arsenohydrocarbons (AsHCs), and arsenosugar phospholipids (AsSugPLs) were identified with high confidence; AsHC332, AsHC360, and AsSugPL720 in seaweed, AsHC332 in tuna, and AsFA474 and AsFA502 in the dogfish liver. AsHC332, AsHC360, and AsFA502 were identified as promising candidates for further work on synthesis, quantification using MS/MS, and toxicity testing.
Collapse
|
4
|
Liu XL. Streamlined Arsenolipid Identification via Direct Arsenic Detection Using RPLC-ESI-QTOF-MS with Collision-Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:300-306. [PMID: 38147679 DOI: 10.1021/jasms.3c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Arsenolipids are organoarsenicals with a long aliphatic chain that have been identified in a wide array of marine organisms. Precise analysis of arsenolipids is crucial for evaluating their toxicity, ensuring food safety, monitoring the environment, and gaining insights into the evolution of arsenic biogeochemistry. However, the discovery of new arsenolipids is often impeded by existing analytical challenges, notably the need for multiple instruments, such as the combination of liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) and inductively coupled plasma mass spectrometry (LC-ICP-MS). This study introduces a high-throughput untargeted analytical method on the basis of an unsophisticated instrumental configuration, LC-ESI-MS with collision-induced dissociation (CID) at 200 eV. This approach provides efficient dissociation of arsenic atoms from their precursor lipids and direct detection of the organic-bound arsenic as monatomic cations, As+. Application of this method has shown promise in rapidly characterizing arsenolipids in diverse samples, which has led to the discovery of a wide range of novel arsenolipids, including seven previously unidentified thioxoarsenolipids in ancient marine sediments.
Collapse
Affiliation(s)
- Xiao-Lei Liu
- School of Geosciences, University of Oklahoma, 100 E. Boyd Street, Norman, Oklahoma 73019, United States
| |
Collapse
|
5
|
Silva MS, Tibon J, Sartipiyarahmadi S, Remø SC, Sele V, Søfteland L, Sveier H, Wiech M, Philip AJP, Berntssen M. Arsenic speciation and arsenic feed-to-fish transfer in Atlantic salmon fed marine low trophic feeds based blue mussel and kelp. J Trace Elem Med Biol 2023; 80:127319. [PMID: 37866214 DOI: 10.1016/j.jtemb.2023.127319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Aquaculture aims to reduce the environmental and climate footprints of feed production. Consequently, low trophic marine (LTM) resources such as blue mussels and kelp are potential candidates to be used as ingredients in salmon feed. It is relevant to study potential undesirables associated with their use, as well as assessing food safety by investigating their transfer from feed-to-fish. The marine biota is well known to contain relatively high levels of arsenic (As), which may be present in different organic forms depending on marine biota type and trophic position. Thus, it is important to not only obtain data on the concentrations of As, but also on the As species present in the raw materials, feed and farmed salmon when being fed novel LTM feed resources. METHODS Atlantic salmon were fed experimental diets for 70 days. A total of nine diets were prepared: four diets containing up to 4 % fermented kelp, three diets containing up to 11 % blue mussel silage, and one diet containing 12 % blue mussel meal, in addition to a standard reference diet containing 25 % fish meal. Concentrations of As and As species in feeds, faeces, liver and fillet of Atlantic salmon were determined by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography coupled to ICP-MS (HPLC-ICP-MS), respectively. RESULTS The use of kelp or blue mussel-based feed ingredients increased the concentration of total As, but maximum level as defined in Directive 2002/32 EC and amendments was not exceeded. The concentrations found in the experimental feeds ranged from 3.4 mg kg-1 to 4.6 mg kg-1 ww. Arsenic speciation in the feed varied based on the ingredient, with arsenobetaine dominating in all feed samples (36-60 % of the total As), while arsenosugars (5.2-8.9 % of the total As) were abundant in kelp-included feed. The intestinal uptake of total As ranged from 67 % to 83 %, but retention in fillet only ranged from 2 % to 22 % and in liver from 0.3 % to 0.6 %, depending on the marine source used. Fish fed feeds containing blue mussel showed higher intestinal uptake of total As when compared with fish fed feeds containing fermented kelp. Fish fed fermented kelp-based feeds had higher retained concentrations of total As when comparing with fish fed feeds containing blue mussel. Despite relatively high intestinal uptake of total As, inorganic and organic As, the retained concentrations of As did not reflect the same trend. CONCLUSION Although the use of LTM feed ingredients increased the level of total As in this feeds, salmon reared on these diets did not show increased total As levels. The well-known toxic inorganic As forms were not detected in salmon muscle reared on LTM diets, and the non-toxic organic AsB was the dominant As species that was retained in salmon muscle, while the organic AsSug forms were not. This study shows that speciation analysis of the LTM resources provides valuable information of the feed-to-fish transfer of As, needed to assess the food safety of farmed Atlantic salmon reared on novel low trophic feeds.
Collapse
Affiliation(s)
- Marta S Silva
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | - Jojo Tibon
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, 2800 Kgs, Lyngby, Denmark
| | - Sahar Sartipiyarahmadi
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway; Department of Biological Sciences, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
| | - Sofie C Remø
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | - Veronika Sele
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | - Liv Søfteland
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | - Harald Sveier
- Lerøy Seafood Group ASA, P.O. Box 7600, 5020 Bergen, Norway
| | - Martin Wiech
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway
| | | | - Marc Berntssen
- Institute of Marine Research, P.O. Box 1870, 5817 Bergen, Norway.
| |
Collapse
|
6
|
Coniglio D, Ventura G, Calvano CD, Losito I, Cataldi TRI. Strategies for the analysis of arsenolipids in marine foods: A review. J Pharm Biomed Anal 2023; 235:115628. [PMID: 37579719 DOI: 10.1016/j.jpba.2023.115628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
Arsenic-containing lipids, also named arsenolipids (AsLs), are a group of organic compounds usually found in a variety of marine organisms such as fish, algae, shellfish, marine oils, and microorganisms. Numerous AsLs have been recognised so far, from simple compounds such as arsenic fatty acids (AsFAs), arsenic hydrocarbons (AsHCs), and trimethylarsenio fatty alcohols (TMAsFOHs) to more complex arsenic-containing species, of which arsenophospholipids (AsPLs) are a case in point. Mass spectrometry, both as inductively coupled plasma (ICP-MS) and liquid chromatography coupled by an electrospray source (LC-ESI-MS), was applied to organic arsenicals playing a key role in extending and refining the characterisation of arsenic-containing lipids in marine organisms. Herein, upon the introduction of a systematic notation for AsLs and a brief examination of their toxicity and biological role, the most relevant literature concerning the characterisation of AsLs in marine organisms, including edible ones, is reviewed. The use of both ICP-MS and ESI-MS coupled with reversed-phase liquid chromatography (RPLC) has brought significant advancements in the field. In the case of ESI-MS, the employment of negative polarity and tandem MS analyses has further enhanced these advancements. One notable development is the identification of the m/z 389.0 ion ([AsC10H19O9P]-) as a diagnostic product ion of AsPLs, which is obtained from the fragmentation of the deprotonated forms of AsPLs ([M - H]-). The pinpointing product ions offer the possibility of determining the identity and regiochemistry of AsPL side chains. Advanced MS-based analytical methods may contribute remarkably to the understanding of the chemical diversity characterising the metalloid As in natural organic compounds of marine organisms.
Collapse
Affiliation(s)
- Davide Coniglio
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Giovanni Ventura
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Cosima D Calvano
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy.
| | - Ilario Losito
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy
| | - Tommaso R I Cataldi
- Department of Chemistry, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy; Interdepartmental Research Center SMART, University of Bari Aldo Moro, via Orabona 4, 70126 Bari, Italy.
| |
Collapse
|
7
|
Liu Q, Wu M, Jiang M. Arsenolipids in raw and cooked seafood products in southwest China: A non-targeted analysis. CHEMOSPHERE 2022; 307:135769. [PMID: 35868526 DOI: 10.1016/j.chemosphere.2022.135769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/03/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Arsenolipids are the primary form of arsenic in the fat of marine organisms. Because seafood is a common source of arsenic exposure and some arsenolipids are toxic, studying the abundance and species of arsenolipids in seafood is crucial for health risk assessment. Current arsenolipid research is confined by analytical techniques and limited to raw seafood analysis, despite the fact that most seafood is ingested cooked. Therefore, the aim of this study is to evaluate which seafood contributes to arsenolipid dietary intake and investigate the changes in arsenolipids before and after cooking. In Chongqing, China, popular seafood such as clam, shrimp, oyster, abalone, hairtail, and yellow croaker were collected. The raw and cooked samples prepared from these seafood products were examined using a non-targeted screening approach established for arsenolipids, which coupled high-performance liquid chromatography with data-independent high-resolution quadrupole-time-of-flight electrospray ionization tandem mass spectrometry. Arsenic-containing hydrocarbons (AsHC330, AsHC332, and AsHC360), arsenic-containing fatty acids (AsFA362, AsFA390, AsFA404, AsFA418, and AsFA422), trimethylarsine oxide, and thiolated trimethylarsinic acid were detected. The species of arsenolipids in each type of seafood remained intact after heating in the microwave oven. In cooked samples, the concentrations of AsFA362 and AsFA390 were significantly lower than in raw samples, whereas the concentrations of other arsenolipids were unchanged. Microwave cooking did not result in the thiolation of the detected arsenolipids. The most detected species in raw and cooked samples were AsFA362, AsFA390, and AsFA418. Most arsenolipid species were found in the highest levels in hairtails and yellow croakers. It is the first time that arsenolipids have been found in the oyster, abalone, abalone liver, and yellow croaker. The present study contributes to a better understanding of arsenolipids exposure from seafood, which is useful for assessing the health risks of arsenic.
Collapse
Affiliation(s)
- Qingqing Liu
- College of Resource and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing Science and Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Mingjun Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Min Jiang
- College of Resource and Environment, Southwest University, Chongqing, 400716, China
| |
Collapse
|
8
|
Tibon J, Amlund H, Gomez-Delgado AI, Berntssen MHG, Silva MS, Wiech M, Sloth JJ, Sele V. Arsenic species in mesopelagic organisms and their fate during aquafeed processing. CHEMOSPHERE 2022; 302:134906. [PMID: 35561763 DOI: 10.1016/j.chemosphere.2022.134906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
A responsible harvest of mesopelagic species as aquafeed ingredients has the potential to address the United Nations Sustainable Development Goal 14, which calls for sustainable use of marine resources. Prior to utilization, the levels of undesirable substances need to be examined, and earlier studies on mesopelagic species have reported on total arsenic (As) content. However, the total As content does not give a complete basis for risk assessment since As can occur in different chemical species with varying toxicity. In this work, As speciation was conducted in single-species samples of the five most abundant mesopelagic organisms in Norwegian fjords. In addition, As species were studied in mesopelagic mixed biomass and in the resulting oil and meal feed ingredients after lab-scale feed processing. Water-soluble As species were determined based on ion-exchange high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). This was supplemented by extracting arsenolipids (AsLipids) and determining total As in this fraction. The non-toxic arsenobetaine (AB) was the dominant form in mesopelagic crustaceans and fish species, accounting for approximately 70% and 50% of total As, respectively. Other water-soluble species were present in minor fractions, including carcinogenic inorganic As, which, in most samples, was below limit of quantification. The fish species had a higher proportion of AsLipids, approximately 35% of total As, compared to crustaceans which contained 20% on average. The feed processing simulation revealed generally low levels of water-soluble As species besides AB, but considerable fractions of potentially toxic AsLipids were found in the biomass, and transferred to the mesopelagic meal and oil. This study is the first to report occurrence data of at least 12 As species in mesopelagic organisms, thereby providing valuable information for future risk assessments on the feasibility of harnessing mesopelagic biomass as feed ingredients.
Collapse
Affiliation(s)
- Jojo Tibon
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | - Heidi Amlund
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | | | - Marc H G Berntssen
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Marta S Silva
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Martin Wiech
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway
| | - Jens J Sloth
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800 Kgs. Lyngby, Denmark
| | - Veronika Sele
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817 Bergen, Norway.
| |
Collapse
|