1
|
Suchon P, Soukarieh O, Bernard C, Mariotti A, Ernest V, Barthet MC, Saut N, Theron A, Biron-Andréani C, Daniel MY, Catella J, Rohrlich PS, Blanc-Jouvan F, Le Cam Duchez V, Dari L, Trégouët DA, Morange PE. Assessment of a next generation sequencing gene panel strategy in 133 patients with negative thrombophilia screening. J Thromb Haemost 2025; 23:997-1008. [PMID: 39675565 DOI: 10.1016/j.jtha.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/25/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Although heritability of venous thromboembolism (VTE) is high, the thrombophilia screening appears to be positive only in a minority of VTE patients. Adding rare variants screening to identify VTE missing heritability still requires further assessment. OBJECTIVES We report the results of a panel strategy after 3 years of application. METHODS We performed the sequencing of 28 genes related to coagulation cascade and/or VTE using high-throughput sequencing in133 unrelated patients with a personal history of VTE and negative thrombophilia screening. Only variants with minor allele frequency <0.1% were classified according to the American College of Medical Genetics recommendations. We recorded class 3, 4, and 5 variants. RESULTS We identified class 3, 4, or 5 variants in 46 patients resulting in an identification rate of 35%. Out of the 45 recorded variants, 35 were considered as class 3 (78%), 9 were class 4 (20%), and 1 was class 5 (2%). Four genes accounted for nearly two-thirds (27/45) of the identified variants: SERPINC1, PROS1, F2, and F5. We observed a high rate of recurrent variants in the SERPINC1 and PROS1 genes, including the Cambridge II (SERPINC1 p.A416S), Dublin (SERPINC1 p.V30E), and Heerlen (PROS1 p.S501P) variants. The elevated frequency of these variants in a symptomatic population, compared to their frequency in the general population, provides strong support for their association with VTE risk. We identified 4 (likely) pathogenic variants in F2: p.R596Q (F2 Belgrade), p.R541W, p.P386T, and p.R425L. CONCLUSION The high proportion of class 3 variants emphasizes the need for functional studies to better characterize and classify them.
Collapse
Affiliation(s)
- Pierre Suchon
- C2VN, INSERM, INRAE, Aix Marseille University, Marseille, France; Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Omar Soukarieh
- Bordeaux Population Health Research Center, INSERM UMR 1219, University of Bordeaux, Bordeaux, France; INSERM, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France
| | - Clara Bernard
- C2VN, INSERM, INRAE, Aix Marseille University, Marseille, France; Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Antoine Mariotti
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Vincent Ernest
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | | | - Noémie Saut
- Laboratory of Haematology, La Timone Hospital, Marseille, France
| | - Alexandre Theron
- Department of Pediatric Oncology and Hematology, University of Montpellier, Montpellier University Hospital, Montpellier, France; Resources and Competence Center for Constitutional Bleeding Disorders, University of Montpellier, Montpellier University Hospital, Montpellier, France
| | - Christine Biron-Andréani
- Department of Biological Hematology, Resources and Competence Center for Constitutional Bleeding Disorders, University of Montpellier, Montpellier, France
| | - Mélanie Y Daniel
- Hematology and Transfusion Department, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
| | - Judith Catella
- Unité de Médecine Vasculaire, Service de Médecine Interne, Hopital Edouard Herriot, Hospices Civils de Lyon, France
| | | | - Florence Blanc-Jouvan
- Laboratoire d'hématologie, Centre Hospitalier Annecy Genevois, 1 avenue de l'Hôpital, 74370 Epagny Metz-Tessy, France
| | - Véronique Le Cam Duchez
- Univ Rouen Normandie, INSERM U1096, Vascular hemostasis Unit, CHU Rouen, F76000 Rouen, France
| | - Loubna Dari
- Service de Médecine vasculaire, Hôpital Saint André, CHU de Bordeaux, Bordeaux, France; Université de Bordeaux, Inserm, BPH, Team AHeaD U1219, Bordeaux, France
| | - David-Alexandre Trégouët
- Bordeaux Population Health Research Center, INSERM UMR 1219, University of Bordeaux, Bordeaux, France
| | - Pierre-Emmanuel Morange
- C2VN, INSERM, INRAE, Aix Marseille University, Marseille, France; Laboratory of Haematology, La Timone Hospital, Marseille, France.
| |
Collapse
|
2
|
Jourdy Y, Chatron N, Frétigny M, Zawadzki C, Lienhart A, Stieltjes N, Rohrlich PS, Thauvin-Robinet C, Volot F, Hamida YF, Hariti G, Leuci A, Dargaud Y, Sanlaville D, Vinciguerra C. Whole F8 gene sequencing identified pathogenic structural variants in the remaining unsolved patients with severe hemophilia A. J Thromb Haemost 2024; 22:1616-1626. [PMID: 38484912 DOI: 10.1016/j.jtha.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND No F8 genetic abnormality is detected in approximately 1% to 2% of patients with severe hemophilia A (HA) using conventional genetic approaches. In these patients, deep intronic variation or F8 disrupting genomic rearrangement could be causal. OBJECTIVES The study aimed to identify the causal variation in families with a history of severe HA for whom genetic investigations failed. METHODS We performed whole F8 gene sequencing in 8 propositi. Genomic rearrangements were confirmed by Sanger sequencing of breakpoint junctions and/or quantitative polymerase chain reaction. RESULTS A structural variant disrupting F8 was found in each propositus, so that all the 815 families with a history of severe HA registered in our laboratory received a conclusive genetic diagnosis. These structural variants consisted of 3 balanced inversions, 3 large insertions of gained regions, and 1 retrotransposition of a mobile element. The 3 inversions were 105 Mb, 1.97 Mb, and 0.362 Mb in size. Among the insertions of gained regions, one corresponded to the insertion of a 34 kb gained region from chromosome 6q27 in F8 intron 6, another was the insertion of a 447 kb duplicated region from chromosome 9p22.1 in F8 intron 14, and the last one was the insertion of an Xq28 349 kb gained in F8 intron 5. CONCLUSION All the genetically unsolved cases of severe HA in this cohort were due to structural variants disrupting F8. This study highlights the effectiveness of whole F8 sequencing to improve the molecular diagnosis of HA when the conventional approach fails.
Collapse
Affiliation(s)
- Yohann Jourdy
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France; Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France.
| | - Nicolas Chatron
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France; Université Claude Bernard Lyon 1 - CNRS UMR 5261 -INSERM U1315, Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Lyon, France
| | - Mathilde Frétigny
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
| | - Christophe Zawadzki
- Pôle de Biologie Pathologie Génétique, Institut d'Hématologie - Transfusion, CHU Lille, Lille, France
| | - Anne Lienhart
- Hospices Civils de Lyon, Lyon Hemophilia Center and Clinical Haemostasis Unit, Bron, France
| | | | | | - Christel Thauvin-Robinet
- Centre de Génétique, Centre de Référence, Déficiences Intellectuelles de Causes Rares, Hôpital d'Enfants, CHU Dijon Bourgogne, Dijon, France
| | | | | | - Ghania Hariti
- Laboratoire de recherche en hémostase, Université d'Alger 1, Alger, Algérie
| | - Alexandre Leuci
- Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| | - Yesim Dargaud
- Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France; Hospices Civils de Lyon, Lyon Hemophilia Center and Clinical Haemostasis Unit, Bron, France
| | - Damien Sanlaville
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service de génétique, Bron, France; Université Claude Bernard Lyon 1 - CNRS UMR 5261 -INSERM U1315, Institute NeuroMyoGène, Laboratoire Physiopathologie et Génétique du Neurone et du Muscle, Lyon, France
| | - Christine Vinciguerra
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France; Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| |
Collapse
|
3
|
Wang R, Helbig I, Edmondson AC, Lin L, Xing Y. Splicing defects in rare diseases: transcriptomics and machine learning strategies towards genetic diagnosis. Brief Bioinform 2023; 24:bbad284. [PMID: 37580177 PMCID: PMC10516351 DOI: 10.1093/bib/bbad284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/10/2023] [Accepted: 07/20/2023] [Indexed: 08/16/2023] Open
Abstract
Genomic variants affecting pre-messenger RNA splicing and its regulation are known to underlie many rare genetic diseases. However, common workflows for genetic diagnosis and clinical variant interpretation frequently overlook splice-altering variants. To better serve patient populations and advance biomedical knowledge, it has become increasingly important to develop and refine approaches for detecting and interpreting pathogenic splicing variants. In this review, we will summarize a few recent developments and challenges in using RNA sequencing technologies for rare disease investigation. Moreover, we will discuss how recent computational splicing prediction tools have emerged as complementary approaches for revealing disease-causing variants underlying splicing defects. We speculate that continuous improvements to sequencing technologies and predictive modeling will not only expand our understanding of splicing regulation but also bring us closer to filling the diagnostic gap for rare disease patients.
Collapse
Affiliation(s)
- Robert Wang
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Genomics and Computational Biology Graduate Program, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- The Epilepsy NeuroGenetics Initiative, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew C Edmondson
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lan Lin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yi Xing
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Dericquebourg A, Fretigny M, Leuci A, Zawadzki C, Huguenin Y, Castet SM, Dargaud Y, Vinciguerra C, Jourdy Y. Whole F8 gene sequencing combined with splicing functional analyses led to a substantial increase of the molecular diagnosis yield for non-severe haemophilia A. Haemophilia 2023; 29:1320-1333. [PMID: 37410802 DOI: 10.1111/hae.14824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/24/2023] [Indexed: 07/08/2023]
Abstract
INTRODUCTION Conventional genetic investigation fails to identify the F8 causal variant in 2.5%-10% of haemophilia A (HA) patients with non-severe phenotypes. In these cases, F8 deep intronic variants could be causal. AIM To identify pathogenic F8 deep intronic variants in genetically unresolved families with non-severe HA analysed in the haematology laboratory of the Hospices Civils de Lyon. METHODS The whole F8 was analysed by next generation sequencing. The pathogenic impact of candidate variants identified was assessed using both in silico analysis (MaxEntScan and spliceAI) and functional analysis (RNA or minigene assay). RESULTS Sequencing was performed in 49/55 families included for which a DNA sample from a male propositus was available. In total, 33 candidate variants from 43 propositi were identified. These variants corresponded to 31 single nucleotide substitutions, one 173-bp deletion, and an 869-bp tandem triplication. No candidate variant was found in six propositi. The most frequent variants found were the association of [c.2113+1154G>C and c.5374-304C>T], identified in five propositi, and the c.2114-6529C>G identified in nine propositi. Four variants had been previously described as HA-causing. Splicing functional assay found a deleterious impact for 11 substitutions (c.671-94G>A, c.788-312A>G, c.2113+1154G>C, c.2114-6529C>G, c.5999-820A>T, c.5999-786C>A, c.5999-669G>T, c.5999-669G>A, c.5999-669G>C, c.6900+4104A>C, and c.6901-2992A>G). The HA-causing variant was identified in 33/49 (67%) cases. In total, F8 deep intronic variants caused 8.8% of the non-severe HA among the 1643 families analysed in our laboratory. CONCLUSION The results emphasise the value of whole F8 gene sequencing combined with splicing functional analyses to improve the diagnosis yield for non-severe HA.
Collapse
Affiliation(s)
- Amy Dericquebourg
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
- Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| | - Mathilde Fretigny
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
| | - Alexandre Leuci
- Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| | - Christophe Zawadzki
- Pôle de Biologie Pathologie Génétique, Institut d'Hématologie - Transfusion, CHU Lille, Lille, France
| | - Yoann Huguenin
- Centre de Ressources et de Compétence des Maladies Hémorragiques Constitutionnelles, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Sabine-Marie Castet
- Centre de Ressources et de Compétence des Maladies Hémorragiques Constitutionnelles, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - Yesim Dargaud
- Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
- Unité d'Hémostase Clinique, Centre National de Reference de l'Hémophilie, Hôpital Cardiologique Louis Pradel, Université Lyon, Lyon, France
| | - Christine Vinciguerra
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
- Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| | - Yohann Jourdy
- Hospices Civils de Lyon, Groupe Hospitalier Est, Service d'hématologie biologique, Bron, France
- Université Claude Bernard Lyon 1, UR4609 Hémostase et thrombose, Lyon, France
| |
Collapse
|