1
|
Systemic Response of Antioxidants, Heat Shock Proteins, and Inflammatory Biomarkers to Short-Lasting Exercise Training in Healthy Male Subjects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1938492. [PMID: 34853628 PMCID: PMC8629640 DOI: 10.1155/2021/1938492] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Regular physical activity can enhance immune function and effectively prevents the spread of the cytokine response, thus reducing systemic low-grade inflammation and improving various immune markers. Moreover, regular exercise maintains redox homeostasis in skeletal muscle and other tissues, including immune cells, but the interconnection between the anti-inflammatory effects of exercise with the redox status of immune cells is still poorly understood. With the aim to verify the overall beneficial effect of regular training on the immune system, we have examined the acute and short-term effect of a 5-day exercise program on the modulation of protein and lipid oxidation, antioxidants (i.e., superoxide dismutase-1 (SOD1) and superoxide dismutase-2 (SOD2), glutathione peroxide 1 (GPx1), thioredoxin reductase-1 (TrxR1), and catalase (CAT)), and heat shock protein expression (i.e., heat shock protein-70 (HSP70) and heat shock protein-27 (HSP27)), at both mRNA and protein levels, as well as the activation of the nuclear factor kappa light chain enhancer of activated B cells (NFκB) in peripheral blood mononuclear cells (PBMCs). Moreover, plasmatic markers of oxidative stress, inflammation, and stress response (i.e., protein carbonyl content, interleukin-6 (IL6), interleukin-8 (IL8), interleukin-10 (IL10), interleukin-17E (IL17E), interleukin-17F (IL17F), interleukin-21 (IL21), interleukin-22 (IL22), and interleukin-23 (IL23)) were analyzed in active untrained young adult subjects. Even in the absence of an increased amount of protein or lipid oxidation, we confirmed a PBMC upregulation of SOD1 (1.26 ± 0.07 fold change, p < 0.05), HSP70 (1.59 ± 0.28 fold change, p < 0.05), and HSP27 gene expression (1.49 ± 0.09 fold change, p < 0.05) after 3 hours from the first bout of exercise, followed by an increase in proteins' amount at 24 hours (SOD1, 1.80 ± 0.34 fold change; HSP70, 3.40 ± 0.58 fold change; and HSP27, 1.81 ± 0.20 fold change, p < 0.05) and return to basal levels after the 5 days of aerobic training. Indeed, the posttraining basal levels of oxidized molecules in plasma and PBMCs were statistically lower than the pretraining levels (carbonyl content, 0.50 ± 0.05 fold change, p < 0.01), paralleled by a lower expression of SOD2, Gpx1, and TrxR1, at mRNA (SOD2, 0.63 ± 0.06; GPx1, 0.69 ± 0.07; and TrxR1, 0.69 ± 0.12 fold change, p < 0.05) and protein (TrxR1, 0.49 ± 0.11 fold change, p < 0.05) levels. These results verified the existence of an early phase of redox adaptation to physical exercise already achievable after 5 days of moderate, regular aerobic training. More interestingly, this phenomenon was paralleled by the degree of NFκB activation in PBMCs and the decrease of plasmatic proinflammatory cytokines IL8, IL21, and IL22 in the posttraining period, suggesting an interconnected, short-term efficacy of aerobic exercise towards systemic oxidative stress and inflammation.
Collapse
|
2
|
Sotiridis A, Debevec T, Ciuha U, McDonnell AC, Mlinar T, Royal JT, Mekjavic IB. Aerobic but not thermoregulatory gains following a 10-day moderate-intensity training protocol are fitness level dependent: A cross-adaptation perspective. Physiol Rep 2021; 8:e14355. [PMID: 32061183 PMCID: PMC7023889 DOI: 10.14814/phy2.14355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 11/24/2022] Open
Abstract
Moderate‐intensity exercise sessions are incorporated into heat‐acclimation and hypoxic‐training protocols to improve performance in hot and hypoxic environments, respectively. Consequently, a training effect might contribute to aerobic performance gains, at least in less fit participants. To explore the interaction between fitness level and a training stimulus commonly applied during acclimation protocols, we recruited 10 young males of a higher (more fit‐MF, peak aerobic power [VO2peak]: 57.9 [6.2] ml·kg−1·min−1) and 10 of a lower (less fit‐LF, VO2peak: 41.7 [5.0] ml·kg−1·min−1) fitness level. They underwent 10 daily exercise sessions (60 min@50% peak power output [Wpeak]) in thermoneutral conditions. The participants performed exercise testing on a cycle ergometer before and after the training period in normoxic (NOR), hypoxic (13.5% FiO2; HYP), and hot (35°C, 50% RH; HE) conditions in a randomized and counterbalanced order. Each test consisted of two stages; a steady‐state exercise (30 min@40% NOR Wpeak to evaluate thermoregulatory function) followed by incremental exercise to exhaustion. VO2peak increased by 9.2 (8.5)% (p = .024) and 10.2 (15.4)% (p = .037) only in the LF group in NOR and HE, respectively. Wpeak increases were correlated with baseline values in NOR (r = −.58, p = .010) and HYP (r = −.52, p = .018). MF individuals improved gross mechanical efficiency in HYP. Peak sweat rate increased in both groups in HE, whereas MF participants activated the forehead sweating response at lower rectal temperatures post‐training. In conclusion, an increase in VO2peak but not mechanical efficiency seems probable in LF males after a 10‐day moderate‐exercise training protocol.
Collapse
Affiliation(s)
- Alexandros Sotiridis
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Tadej Debevec
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Faculty of Sports, University of Ljubljana, Ljubljana, Slovenia
| | - Urša Ciuha
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Adam C McDonnell
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Tinkara Mlinar
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Joshua T Royal
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Igor B Mekjavic
- Department of Automation, Biocybernetics and Robotics, Jozef Stefan Institute, Ljubljana, Slovenia
| |
Collapse
|
3
|
Nava R, Zuhl MN. Heat acclimation-induced intracellular HSP70 in humans: a meta-analysis. Cell Stress Chaperones 2020; 25:35-45. [PMID: 31823288 PMCID: PMC6985308 DOI: 10.1007/s12192-019-01059-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 02/08/2023] Open
Abstract
Heat acclimation (HA) in humans promotes thermoregulatory adaptations that support management of core temperature in hot environments and reduces the likelihood of heat related illness. Another adaptation to HA is thermotolerance through induction of the heat shock protein (HSP) stress system, which provides protection against thermal insult. However, whether or not HA leads to upregulation of the intracellular HSP system, namely intracellular HSP70 (HSP70), is unclear in humans. Therefore, the purposes of this meta-analysis were to determine if HA leads to HSP70 induction among humans and to evaluate how methodological differences among HA studies influence findings regarding HA-induced HSP70 accumulation. Several databases were searched to identify studies that measured HSP70 (protein and mRNA) changes in response to HA among humans. The effect of HA on HSP70 was analyzed. Differences in the effect of HA were assessed between protein and mRNA. The moderating effect of several independent variables (HA frequency, HA duration, core temperature, exercise intensity) on HSP70 was also evaluated. Data were extracted from 12 studies including 118 participants (mean age 24 years, 98% male). There was a significant effect of HA on HSP70 expression, g = 0.97 (95% CI, 0.08-1.89). The effect of HA was different between subgroups (protein vs. mRNA), g = 1.51 (95% CI, 0.71-2.31), and g = - 0.39 (95% CI, - 1.36), respectively. The frequency of HA (in days) moderated HSP70 protein expression. There was a significant effect of heat acclimation on HSP70 induction in humans. The only factor among identified studies that may moderate this response was the frequency (number of days) of heat exposure.
Collapse
Affiliation(s)
- Roberto Nava
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, 87131, USA.
| | - Micah N Zuhl
- Department of Health, Exercise, and Sports Sciences, University of New Mexico, Albuquerque, NM, 87131, USA
- School of Health Sciences, Central Michigan University, Mount Pleasant, MI, 48859, USA
| |
Collapse
|
4
|
Bourbeau KC, Rosinski MM, Szczygiel TM, Pettit-Mee R, Sessions JE, Zuhl MN. The stress response in human peripheral mononuclear cells is related to aerobic fitness and Body Mass Index. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2019. [DOI: 10.23736/s0393-3660.18.03854-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Gibson OR, Tuttle JA, Watt PW, Maxwell NS, Taylor L. Hsp72 and Hsp90α mRNA transcription is characterised by large, sustained changes in core temperature during heat acclimation. Cell Stress Chaperones 2016; 21:1021-1035. [PMID: 27511024 PMCID: PMC5083671 DOI: 10.1007/s12192-016-0726-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
Abstract
Increased intracellular heat shock protein-72 (Hsp72) and heat shock protein-90α (Hsp90α) have been implicated as important components of acquired thermotolerance, providing cytoprotection during stress. This experiment determined the physiological responses characterising increases in Hsp72 and Hsp90α mRNA on the first and tenth day of 90-min heat acclimation (in 40.2 °C, 41.0 % relative humidity (RH)) or equivalent normothermic training (in 20 °C, 29 % RH). Pearson's product-moment correlation and stepwise multiple regression were performed to determine relationships between physiological [e.g. (Trec, sweat rate (SR) and heart rate (HR)] and training variables (exercise duration, exercise intensity, work done), and the leukocyte Hsp72 and Hsp90α mRNA responses via reverse transcription quantitative polymerase chain reaction (RT-QPCR) (n = 15). Significant (p < 0.05) correlations existed between increased Hsp72 and Hsp90α mRNA (r = 0.879). Increased core temperature was the most important criteria for gene transcription with ΔTrec (r = 0.714), SR (r = 0.709), Trecfinal45 (r = 0.682), area under the curve where Trec ≥ 38.5 °C (AUC38.5 °C; r = 0.678), peak Trec (r = 0.661), duration Trec ≥ 38.5 °C (r = 0.650) and ΔHR (r = 0.511) each demonstrating a significant (p < 0.05) correlation with the increase in Hsp72 mRNA. The Trec AUC38.5 °C (r = 0.729), ΔTrec (r = 0.691), peak Trec (r = 0.680), Trecfinal45 (r = 0.678), SR (r = 0.660), duration Trec ≥ 38.5 °C (r = 0.629), the rate of change in Trec (r = 0.600) and ΔHR (r = 0.531) were the strongest correlate with the increase in Hsp90α mRNA. Multiple regression improved the model for Hsp90α mRNA only, when Trec AUC38.5 °C and SR were combined. Training variables showed insignificant (p > 0.05) weak (r < 0.300) relationships with Hsp72 and Hsp90α mRNA. Hsp72 and Hsp90α mRNA correlates were comparable on the first and tenth day. When transcription of the related Hsp72 and Hsp90α mRNA is important, protocols should rapidly induce large, prolonged changes in core temperature.
Collapse
Affiliation(s)
- Oliver R Gibson
- Centre for Human Performance, Exercise and Rehabilitation (CHPER), Brunel University London, Uxbridge, UK.
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK.
| | - James A Tuttle
- Muscle Cellular and Molecular Physiology (MCMP) and Applied Sport and Exercise Science (ASEP) Research Groups, Institute of Sport and Physical Activity Research (ISPAR), University of Bedfordshire, Bedford, UK
| | - Peter W Watt
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK
| | - Neil S Maxwell
- Centre for Sport and Exercise Science and Medicine (SESAME), Environmental Extremes Laboratory, Welkin Human Performance Laboratories, University of Brighton, Denton Road, Eastbourne, UK
| | - Lee Taylor
- Athlete Health and Performance Research Centre, ASPETAR, Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| |
Collapse
|
6
|
Périard JD, Ruell PA, Thompson MW, Caillaud C. Moderate- and high-intensity exhaustive exercise in the heat induce a similar increase in monocyte Hsp72. Cell Stress Chaperones 2015; 20:1037-42. [PMID: 26264882 PMCID: PMC4595430 DOI: 10.1007/s12192-015-0631-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/26/2015] [Accepted: 07/27/2015] [Indexed: 11/29/2022] Open
Abstract
This study examined the relationship between exhaustive exercise in the heat at moderate and high intensities on the intracellular heat shock protein 72 (iHsp72) response. Twelve male subjects cycled to exhaustion at 60 and 75% of maximal oxygen uptake in hot conditions (40 °C, 50% RH). iHsp72 concentration was measured in monocytes before, at exhaustion and 24 h after exercise. Rectal temperature, heart rate and oxygen uptake were recorded during exercise. Volitional exhaustion occurred at 58.9 ± 12.1 and 27.3 ± 9.5 min (P < 0.001) and a rectal temperature of 39.8 ± 0.4 and 39.2 ± 0.6 °C (P = 0.002), respectively, for 60 and 75 %. The area under the curve above a rectal temperature of 38.5 °C was greater at 60 % (17.5 ± 6.6 °C min) than 75 % (3.4 ± 4.8 °C min; P < 0.001), whereas the rate of increase in rectal temperature was greater at 75 % (5.1 ± 1.7 vs. 2.2 ± 1.4 °C h(-1); P < 0.001). iHsp72 concentration increased similarly at exhaustion relative to pre-exercise (P = 0.044) and then increased further at 24 h (P < 0.001). Multiple regression analysis revealed no predictor variables associated with iHsp72 expression; however, a correlation was observed between exercise intensities for the increase in iHsp expression at exhaustion and 24 h (P < 0.05). These results suggest that iHsp72 expression increased in relation to the level of hyperthermia attained and sustained at 60 % and the higher metabolic rate and greater rate of increase in core temperature at 75 %, with the further increase in iHsp72 concentration 24 h after exercise reinforcing its role as a chaperone and cytoprotective agent.
Collapse
Affiliation(s)
- J D Périard
- Athlete Health and Performance Research Centre, Aspetar Orthopaedic and Sports Medicine Hospital, PO Box 29222, Doha, Qatar.
- Exercise, Health and Performance Research Group, Faculty of Health Sciences, University of Sydney, Lidcombe, Australia.
| | - P A Ruell
- Exercise, Health and Performance Research Group, Faculty of Health Sciences, University of Sydney, Lidcombe, Australia
| | - M W Thompson
- Exercise, Health and Performance Research Group, Faculty of Health Sciences, University of Sydney, Lidcombe, Australia
| | - C Caillaud
- Exercise, Health and Performance Research Group, Faculty of Health Sciences, University of Sydney, Lidcombe, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, Australia
| |
Collapse
|
7
|
Yamada P, Amorim F, Moseley P, Schneider S. Heat shock protein 72 response to exercise in humans. Sports Med 2009; 38:715-33. [PMID: 18712940 DOI: 10.2165/00007256-200838090-00002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Heat shock protein (Hsp) 72 is a unique, ubiquitous molecule. In vitro and in vivo animal models have shown that increased Hsp 72 is associated with improved cellular survivability and tolerance to stressors. The primary focus of this article is to review the Hsp 72 protein response to exercise in humans. Various mechanisms regulate post-transcriptional activity and therefore measurement of messenger RNA (mRNA) does not necessarily represent the level of functional Hsp 72. For this reason, this article incorporates only a few studies that assessed Hsp 72 mRNA response to exercise. Although this article focuses on human studies, it also includes some key animal studies to provide insight into the mechanisms of the response of Hsp 72 to stress.Intra- (IC) and extracellular (EC) Hsp 72 have different functions. IC Hsp 72 confers cellular protection from subsequent stressors, while EC Hsp 72 has a whole-body systemic role in antigen presentation and immunity. An acute exercise bout stimulates an increase in both IC and EC Hsp 72. Long-term training and improved fitness increases the rate of availability of IC Hsp 72 in response to stress. Other factors that affect Hsp 72 production include environmental factors, exercise mode, duration and intensity, age, estrogen, and anti-oxidant and glycogen availability. The functions and roles of Hsp 72 also depend on the tissue of origin. This article describes the Hsp 72 response to exercise in relation to the tissue assayed (i.e. skeletal muscle vs lymphocyte) and the origin of the sample (i.e. venous vs arterial serum). Collectively, the reviewed studies reveal exciting and novel research that encourages future investigation in this area.
Collapse
Affiliation(s)
- Paulette Yamada
- Department of Health, Exercise and Sports Sciences, University of New Mexico, Albuquerque, New Mexico, USA.
| | | | | | | |
Collapse
|
8
|
|
9
|
|
10
|
Yamada PM, Amorim FT, Moseley P, Robergs R, Schneider SM. Effect of heat acclimation on heat shock protein 72 and interleukin-10 in humans. J Appl Physiol (1985) 2007; 103:1196-204. [PMID: 17615280 DOI: 10.1152/japplphysiol.00242.2007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heat acclimation (HA) results in whole body adaptations that increase heat tolerance, and in addition, HA may also result in protective cellular adaptations. We hypothesized that, after HA, basal intracellular heat shock protein (HSP) 72 and extracellular IL-10 levels would increase, while extracellular HSP72 levels decrease. Ten male and two female subjects completed a 10-day exercise/HA protocol (100-min exercise bout at 56% of maximum O2uptake in a 42.5°C DB, 27.9% RH environment); subjects exhibited classic adaptations that accompany HA. Peripheral blood mononuclear cells (PBMCs) were isolated before and after each acclimation session on days 1, 6, and 10; plasma and serum were collected before and after exercise on the 1st and 10th day of HA. SDS-PAGE was used to determine PBMC HSP72 levels during HA, and ELISA was used to measure plasma IL-10 and serum HSP72 concentrations. The increase in PBMC HSP72 from pre- to postexercise on the 1st day of HA was not significant (mean ± SD, 1.0 ± 0 vs. 1.6 ± 0.6 density units). Preexercise HSP72 levels on day 1 were significantly lower compared with the pre- and postexercise samples on days 6 and 10 (mean ± SD, day 6: 2.1 ± 1.0 and 2.2 ± 1.0, day 10: 2.0 ± 1.3 and 2.2 ± 1.0 density units, respectively, P < 0.05). There were no differences in plasma IL-10 and serum HSP72 postexercise or after 10 days of HA. The sustained elevation of HSP72 from days 6 to 10 may be evidence of a cellular adaptation to HA that contributes to improved heat tolerance and reduced heat illness risk.
Collapse
Affiliation(s)
- Paulette M Yamada
- Department of Physical Performance and Development, University of New Mexico, Albuquerque, New Mexico, USA.
| | | | | | | | | |
Collapse
|
11
|
Marshall HC, Campbell SA, Roberts CW, Nimmo MA. Human physiological and heat shock protein 72 adaptations during the initial phase of humid-heat acclimation. J Therm Biol 2007. [DOI: 10.1016/j.jtherbio.2007.04.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|