1
|
Zhang H, Hu B, Xiong J, Chen T, Xi Q, Luo J, Jiang Q, Sun J, Zhang Y. Genomewide analysis of circular RNA in pituitaries of normal and heat-stressed sows. BMC Genomics 2019; 20:1013. [PMID: 31870281 PMCID: PMC6929353 DOI: 10.1186/s12864-019-6377-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 12/08/2019] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND As a newly characterized type of noncoding RNA, circular RNA (circRNA) has been shown to have functions in diverse biological processes of animals. It has been reported that several noncoding RNAs may regulate animals' response to heat stress which can be easily induced by hyperthermia in summer. However, the expression and functions of circRNAs in the pituitary of sows and whether they participate in heat stress adaption are still unclear. RESULTS In this study, we found that high temperature over the thermoneutral zone of sows during the summer increased the serum heat shock protein 70 (HSP70) level, decreased the superoxide dismutase (SOD) vitality and prolactin (PRL) concentration, and induced heat stress in sows. Then, we explored circRNA in the pituitary of heat-stressed and normal sows using RNA sequencing and bioinformatics analysis. In total, 12,035 circRNAs were detected, with 59 circRNAs differentially expressed, including 42 up-regulated and 17 down-regulated circRNAs in pituitaries of the heat-stressed sows. Six randomly selected circRNAs were identified through reverse transcription PCR followed by DNA sequencing and other 7 randomly selected differentially expressed circRNAs were verified by quantitative real-time PCR analysis. The predicted target genes regulated by circRNAs through sponging microRNAs (miRNAs) were enriched in metabolic pathway. Furthermore, the predicted circRNA-miRNA-mRNA interactions showed that some circRNAs might sponge miRNAs to regulate pituitary-specific genes and heat shock protein family members, indicating circRNA's roles in pituitary hormone secretion and heat stress response. CONCLUSIONS Our results provided a meaningful reference to understand the functions of circRNA in the porcine pituitary and the mechanisms by which circRNA may participate in animals' response to heat stress.
Collapse
Affiliation(s)
- Haojie Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Baoyu Hu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jiali Xiong
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Ting Chen
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Qianyun Xi
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Junyi Luo
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Qingyan Jiang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China
| | - Jiajie Sun
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China.
| | - Yongliang Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, People's Republic of China.
| |
Collapse
|
3
|
Xing T, Wang P, Zhao L, Liu R, Zhao X, Xu X, Zhou G. A comparative study of heat shock protein 70 in normal and PSE (pale, soft, exudative)-like muscle from broiler chickens. Poult Sci 2016; 95:2391-6. [DOI: 10.3382/ps/pew181] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/20/2016] [Indexed: 01/23/2023] Open
|