1
|
Oborová V, Šugerková M, Gvoždík L. Sensitivity of amphibian embryos to timing and magnitude of present and future thermal extremes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:377-388. [PMID: 38327237 DOI: 10.1002/jez.2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Ongoing climate change is increasing the frequency and intensity of extreme temperature events. Unlike the gradual increase on average environmental temperatures, these short-term and unpredictable temperature extremes impact population dynamics of ectotherms through their effect on individual survival. While previous research has predominantly focused on the survival rate of terrestrial embryos under acute heat stress, less attention has been dedicated to the nonlethal effects of ecologically realistic timing and magnitude of temperature extremes on aquatic embryos. In this study, we investigated the influence of the timing and magnitude of current and projected temperature extremes on embryonic life history traits and hatchling behavior in the alpine newt, Ichthyosaura alpestris. Using a factorial experiment under controlled laboratory conditions, we exposed 3- or 10-day-old embryos to different regimes of extreme temperatures for 3 days. Our results show that exposure to different extreme temperature regimes led to a shortened embryonic development time and an increase in hatchling length, while not significantly affecting embryonic survival. The duration of development was sensitive to the timing of temperature extremes, as early exposure accelerated embryo development. Exposure to temperature extremes during embryonic development heightened the exploratory activity of hatched larvae. We conclude that the timing and magnitude of ecologically realistic temperature extremes during embryogenesis have nonlethal effects on life history and behavioral traits. This suggests that species' vulnerability to climate change might be determined by other ecophysiological traits beyond embryonic thermal tolerance in temperate pond-breeding amphibians.
Collapse
Affiliation(s)
- Valentína Oborová
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Monika Šugerková
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| |
Collapse
|
2
|
Brusch GA, Gavira RSB, Viton R, Dupoué A, Leroux-Coyau M, Meylan S, Le Galliard JF, Lourdais O. Additive effects of temperature and water availability on pregnancy in a viviparous lizard. ACTA ACUST UNITED AC 2020; 223:223/19/jeb228064. [PMID: 33046578 DOI: 10.1242/jeb.228064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/20/2020] [Indexed: 11/20/2022]
Abstract
One of the greatest current threats to biodiversity is climate change. However, understanding of organismal responses to fluctuations in temperature and water availability is currently lacking, especially during fundamental life-history stages such as reproduction. To further explore how temperature and water availability impact maternal physiology and reproductive output, we used the viviparous form of the European common lizard (Zootoca vivipara) in a two-by-two factorial design manipulating both hydric and thermal conditions, for the first time. We collected blood samples and morphological measurements during early pregnancy and post-parturition to investigate how water availability, temperature and a combination of the two influence maternal phenology, morphology, physiology and reproductive output. We observed that dehydration during gestation negatively affects maternal physiological condition (lower mass gain, higher tail reserve mobilization) but has little effect on reproductive output. These effects are mainly additive to temperature regimes, with a proportional increase in maternal costs in warmer environments. Our study demonstrates the importance of considering combined effects of water and temperature when investigating organismal responses to climate changes, especially during periods crucial for species survival such as reproduction.
Collapse
Affiliation(s)
- George A Brusch
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS), 79360 Villiers en Bois, France .,Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74074, USA
| | - Rodrigo S B Gavira
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS), 79360 Villiers en Bois, France
| | - Robin Viton
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS), 79360 Villiers en Bois, France
| | - Andréaz Dupoué
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Mathieu Leroux-Coyau
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Sandrine Meylan
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - Jean-François Le Galliard
- Sorbonne Université, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (IEES), 4 Place Jussieu, 75252 Paris Cedex 5, France.,Ecole normale supérieure, PSL University, Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), 11 chemin de Busseau, 77140 Saint-Pierre-lès-Nemours, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, Centre National de la Recherche Scientifique (CNRS), 79360 Villiers en Bois, France.,School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
3
|
Kutcherov D. Stagewise resolution of temperature-dependent embryonic and postembryonic development in the cowpea seed beetle Callosobruchus maculatus (F.). BMC Ecol 2020; 20:50. [PMID: 32917176 PMCID: PMC7488527 DOI: 10.1186/s12898-020-00318-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The thermal plasticity of life-history traits receives wide attention in the recent biological literature. Of all the temperature-dependent traits studied, developmental rates of ectotherms are especially often addressed, and yet surprisingly little is known about embryonic responses to temperature, including changes in the thermal thresholds and thermal sensitivity during early development. Even postembryonic development of many cryptically living species is understood superficially at best. RESULTS This study is the first to estimate the exact durations of developmental stages in the cowpea seed beetle C. maculatus from oviposition to adult emergence at five permissive constant temperatures from 20 to 32 °C. Early embryonic development was tracked and documented by means of destructive sampling and subsequent confocal imaging of fluorescently stained specimens. Late embryonic and early larval development was studied with the use of destructive sampling and light microscopy. Well-resolved temporal series based on thousands of embryos allowed precise timing of the following developmental events: formation of the blastoderm; formation, elongation, and retraction of the germ band; dorsal closure; the onset and completion of sclerotization of the cuticle; hatching, and penetration of the first-instar larva into the cowpea seed. Pupation and adult eclosion were observed directly through an incision in the seed coat. The thermal phenotype of C. maculatus was found to vary in the course of ontogeny and different stages scaled disproportionately with temperature, but pitfalls and caveats associated with analyses of relative durations of individual stages are also briefly discussed. CONCLUSION Disproportionate changes in developmental durations with temperature may have important implications when study design requires a high degree of synchronization among experimental embryos or when the occurrence of particular stages in the field is of interest, as well as in any other cases when development times need to be estimated with precision. This work provides one of the first examples of integration of embryological techniques with ecophysiological concepts and will hopefully motivate similar projects in the future. While experiments with Drosophila continue to be the main source of information on animal development, knowledge on other model species is instrumental to building a broader picture of developmental phenomena.
Collapse
Affiliation(s)
- Dmitry Kutcherov
- Department of Entomology, St. Petersburg State University, St. Petersburg, 199034, Russia.
| |
Collapse
|