1
|
Santiago HP, Leite LHR, Lima PMA, Fóscolo DRC, Natali AJ, Prímola-Gomes TN, Szawka RE, Coimbra CC. Effects of physical training on hypothalamic neuronal activation and expressions of vasopressin and oxytocin in SHR after running until fatigue. Pflugers Arch 2024; 476:365-377. [PMID: 38308122 DOI: 10.1007/s00424-024-02916-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
To assess the influence of physical training on neuronal activation and hypothalamic expression of vasopressin and oxytocin in spontaneously hypertensive rats (SHR), untrained and trained normotensive rats and SHR were submitted to running until fatigue while internal body and tail temperatures were recorded. Hypothalamic c-Fos expression was evaluated in thermoregulatory centers such as the median preoptic nucleus (MnPO), medial preoptic nucleus (mPOA), paraventricular nucleus of the hypothalamus (PVN), and supraoptic nucleus (SON). The PVN and the SON were also investigated for vasopressin and oxytocin expressions. Although exercise training improved the workload performed by the animals, it was reduced in SHR and followed by increased internal body temperature due to tail vasodilation deficit. Physical training enhanced c-Fos expression in the MnPO, mPOA, and PVN of both strains, and these responses were attenuated in SHR. Vasopressin immunoreactivity in the PVN was also increased by physical training to a lesser extent in SHR. The already-reduced oxytocin expression in the PVN of SHR was increased in response to physical training. Within the SON, neuronal activation and the expressions of vasopressin and oxytocin were reduced by hypertension and unaffected by physical training. The data indicate that physical training counterbalances in part the negative effect of hypertension on hypothalamic neuronal activation elicited by exercise, as well as on the expression of vasopressin and oxytocin. These hypertension features seem to negatively influence the workload performed by SHR due to the hyperthermia derived from the inability of physical training to improve heat dissipation through skin vasodilation.
Collapse
Affiliation(s)
- Henrique P Santiago
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Laura H R Leite
- Departamento de Biofísica e Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Paulo M A Lima
- Núcleo de Pesquisa da Faculdade de Medicina da Universidade de Rio Verde, Universidade de Rio Verde, Campus Goiânia, Goiânia, Brazil
| | - Daniela R C Fóscolo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio José Natali
- Departamento de Educação Física, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Raphael E Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cândido C Coimbra
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
2
|
Xu J, Gao W, He T, Yao L, Wu H, Chen Z, Lai Y, Chen Y, Zhang J. The hyperthermic response to intra-preoptic area administration of agmatine in male rats. J Therm Biol 2023; 113:103529. [PMID: 37055134 DOI: 10.1016/j.jtherbio.2023.103529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Agmatine is an endogenous biogenic amine that exerts various effects on the central nervous system. The hypothalamic preoptic area (POA, thermoregulatory command center) has high agmatine immunoreactivity. In this study, in conscious and anesthetized male rats, agmatine microinjection into the POA induced hyperthermic responses associated with increased heat production and locomotor activity. Intra-POA administration of agmatine increased the locomotor activity, the brown adipose tissue temperature and rectum temperature, and induced shivering as demonstrated by increased neck muscle electromyographic activity. However, intra-POA administration of agmatine almost had no impact on the tail temperature of anesthetized rats. Furthermore, there were regional differences in the response to agmatine in the POA. The most effective sites for the microinjection of agmatine to elicit hyperthermic responses were localized in the medial preoptic area (MPA). Agmatine microinjection into the median preoptic nucleus (MnPO) and lateral preoptic nucleus (LPO) had a minimal effect on the mean core temperature. Analysis of the in vitro discharge activity of POA neurons in brain slices when perfused with agmatine showed that agmatine inhibited most warm-sensitive but not temperature-insensitive neurons in the MPA. However, regardless of thermosensitivity, the majority of MnPO and LPO neurons were not responsive to agmatine. The results demonstrated that agmatine injection into the POA of male rats, especially the MPA, induced hyperthermic responses, which may be associated with increased BAT thermogenesis, shivering and locomotor activity by inhibiting warm-sensitive neurons.
Collapse
|
3
|
Cheng Y, Xu J, Zeng R, Zhao X, Gao W, Quan J, Hu X, Shen Z, Zhang J. The Role of Prostaglandin E2 Synthesized in Rat Lateral Parabrachial Nucleus in LPS-Induced Fever. Neuroendocrinology 2022; 112:399-416. [PMID: 34348333 DOI: 10.1159/000518491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/15/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The lateral parabrachial nucleus (LPBN) is considered to be a brain site of the pyrogenic action of prostaglandin (PG) E2 outside of the preoptic area. Yet, the role of the LPBN in fever following a systemic immune challenge remains poorly understood. METHODS We examined the expression of cyclooxygenase-2 (COX-2) and microsomal PGE synthase-1 (mPGES-1) in the LPBN after the intraperitoneal injection of lipopolysaccharide (LPS). We investigated the effects of LPBN NS-398 (COX-2 inhibitor) on LPS-induced fever, the effects of direct LPBN PGE2 administration on the energy expenditure (EE), brown adipose tissue (BAT) thermogenesis, neck muscle electromyographic activity and tail temperature, and the effects of PGE2 on the spontaneous firing activity and thermosensitivity of in vitro LPBN neurons in a brain slice. RESULTS The COX-2 and mPGES-1 enzymes were upregulated at both mRNA and protein levels. The microinjection of NS-398 in the LPBN attenuated the LPS-induced fever. Direct PGE2 administration in the LPBN resulted in a febrile response by a coordinated response of increased EE, BAT thermogenesis, shivering, and possibly decreased heat loss through the tail. The LPBN neurons showed a clear anatomical distinction in the firing rate response to PGE2, with the majority of PGE2-excited or -inhibited neurons being located in the external lateral or dorsal subnucleus of the LPBN, respectively. However, neither the firing rate nor the thermal coefficient response to PGE2 showed any difference between warm-sensitive, cold-sensitive, and temperature-insensitive neurons in the LPBN. CONCLUSIONS PGE2 synthesized in the LPBN was at least partially involved in LPS-induced fever via its different modulations of the firing rate of neurons in different LPBN subnuclei.
Collapse
Affiliation(s)
- Yongjing Cheng
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, China
| | - Jianhui Xu
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, China
| | - Ruixin Zeng
- School of Dentistry, Zunyi Medical University, Zunyi, China
| | - Xi Zhao
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Wenmin Gao
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, China
| | - Junru Quan
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Xiaosong Hu
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Ziling Shen
- School of Basic Medicine, Chengdu Medical College, Chengdu, China
| | - Jie Zhang
- Key Laboratory of Thermoregulation and Inflammation of Sichuan Higher Education Institutes, Chengdu Medical College, Chengdu, China
| |
Collapse
|
4
|
TMEM16C is involved in thermoregulation and protects rodent pups from febrile seizures. Proc Natl Acad Sci U S A 2021; 118:2023342118. [PMID: 33972431 PMCID: PMC8157992 DOI: 10.1073/pnas.2023342118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
As the most common convulsive disorder in infancy and childhood, affecting 2 to 5% of American children in their first 5 y of life, febrile seizures (FSs) are associated with genetic risk factors, including the Tmem16c (Ano3) gene. Whereas central neuronal hyperexcitability has been implicated in FSs, whether FSs may result from compromised body temperature regulation is unknown. To approach this question, we developed rodent models of FSs associated with deficient thermoregulation, including conditional knockout mice with TMEM16C eliminated from a hypothalamic neuronal population important for maintaining body temperature but not from most of the cortical and hippocampal neurons and sensory neurons. Our findings raise the possibility that impaired homeostatic thermoregulation could contribute to the risk of FSs. Febrile seizures (FSs) are the most common convulsion in infancy and childhood. Considering the limitations of current treatments, it is important to examine the mechanistic cause of FSs. Prompted by a genome-wide association study identifying TMEM16C (also known as ANO3) as a risk factor of FSs, we showed previously that loss of TMEM16C function causes hippocampal neuronal hyperexcitability [Feenstra et al., Nat. Genet. 46, 1274–1282 (2014)]. Our previous study further revealed a reduction in the number of warm-sensitive neurons that increase their action potential firing rate with rising temperature of the brain region harboring these hypothalamic neurons. Whereas central neuronal hyperexcitability has been implicated in FSs, it is unclear whether the maximal temperature reached during fever or the rate of body temperature rise affects FSs. Here we report that mutant rodent pups with TMEM16C eliminated from all or a subset of their central neurons serve as FS models with deficient thermoregulation. Tmem16c knockout (KO) rat pups at postnatal day 10 (P10) are more susceptible to hyperthermia-induced seizures. Moreover, they display a more rapid rise of body temperature upon heat exposure. In addition, conditional knockout (cKO) mouse pups (P11) with TMEM16C deletion from the brain display greater susceptibility of hyperthermia-induced seizures as well as deficiency in thermoregulation. We also found similar phenotypes in P11 cKO mouse pups with TMEM16C deletion from Ptgds-expressing cells, including temperature-sensitive neurons in the preoptic area (POA) of the anterior hypothalamus, the brain region that controls body temperature. These findings suggest that homeostatic thermoregulation plays an important role in FSs.
Collapse
|
5
|
Kenkel W. Birth signalling hormones and the developmental consequences of caesarean delivery. J Neuroendocrinol 2021; 33:e12912. [PMID: 33145818 PMCID: PMC10590550 DOI: 10.1111/jne.12912] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
Rates of delivery by caesarean section (CS) are increasing around the globe and, although several epidemiological associations have already been observed between CS and health outcomes in later life, more are sure to be discovered as this practice continues to gain popularity. The components of vaginal delivery that protect offspring from the negative consequences of CS delivery in later life are currently unknown, although much attention to date has focused on differences in microbial colonisation. Here, we present the case that differing hormonal experiences at birth may also contribute to the neurodevelopmental consequences of CS delivery. Levels of each of the 'birth signalling hormones' (oxytocin, arginine vasopressin, epinephrine, norepinephrine and the glucocorticoids) are lower following CS compared to vaginal delivery, and there is substantial evidence for each that manipulations in early life results in long-term neurodevelopmental consequences. We draw from the research traditions of neuroendocrinology and developmental psychobiology to suggest that the perinatal period is a sensitive period, during which hormones achieve organisational effects. Furthermore, there is much to be learned from research on developmental programming by early-life stress that may inform research on CS, as a result of shared neuroendocrine mechanisms at work. We compare and contrast the effects of early-life stress with those of CS delivery and propose new avenues of research based on the links between the two bodies of literature. The research conducted to date suggests that the differences in hormone signalling seen in CS neonates may produce long-term neurodevelopmental consequences.
Collapse
Affiliation(s)
- William Kenkel
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
6
|
da Fonseca SF, Mendonça VA, Silva SB, Domingues TE, Melo DS, Martins JB, Pires W, Santos CFF, de Fátima Pereira W, Leite LHR, Coimbra CC, Leite HR, Lacerda ACR. Central cholinergic activation induces greater thermoregulatory and cardiovascular responses in spontaneously hypertensive than in normotensive rats. J Therm Biol 2018; 77:86-95. [PMID: 30196904 DOI: 10.1016/j.jtherbio.2018.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 10/28/2022]
Abstract
There is evidence that central cholinergic stimulation increases heat dissipation in normotensive rats besides causing changes on the cardiovascular system via modulation of baroreceptors activity. However, the contribution of the central cholinergic system on thermoregulatory responses and its relationship with cardiovascular adjustments in spontaneously hypertensive rats (SHRs), an animal model of reduced baroreceptor sensitivity and thermoregulatory deficit, has not been completely clarified. Therefore, the aim of this study was to verify the involvement of the central cholinergic system in cardiovascular and thermoregulatory adjustments in SHRs. Male Wistar rats (n = 17) and SHRs (n = 17) were implanted with an intracerebroventricular cannula for injections of 2 µL of physostigmine (phy) or saline solution. Tail temperature (Ttail), internal body temperature (Tint), systolic arterial pressure (SAP), heart rate (HR) and metabolic rate were registered during 60 min while the animals remained at rest after randomly receiving the injections. The variability of the SAP and the HR was estimated by the fast Fourier transform. Phy treatment began a succession of cardiovascular and thermoregulatory responses that resulted in increased SAP, reduced HR and increased Ttail in both Wistar and SHRs groups. The magnitude of these effects seems to be more intense in SHRs, since the improvement of heat dissipation reflected in Tint. Taken together, these results provide evidence that hypertensive rats present greater cardiovascular and thermoregulatory responses than normotensive rats after central cholinergic stimulation.
Collapse
Affiliation(s)
- Sueli Ferreira da Fonseca
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Vanessa Amaral Mendonça
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Sara Barros Silva
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Talita Emanuela Domingues
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Dirceu Sousa Melo
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Jeanne Brenda Martins
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Washington Pires
- Departamento de Educação Física, Universidade Federal de Juiz de Fora (UFJF), Campus Governador Valadares, Minas Gerais, Brazil
| | | | - Wagner de Fátima Pereira
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil
| | - Laura Hora Rios Leite
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Cândido Celso Coimbra
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Hércules Ribeiro Leite
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil
| | - Ana Cristina Rodrigues Lacerda
- Centro Integrado de Pós-Graduação e Pesquisa em Saúde (CIPq-Saúde), Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, Minas Gerais, Brazil; Programa Multicêntrico de Pós-Graduação em Ciências Fisiológicas (PMPGCF), Sociedade Brasileira de Fisiologia (SBFis), Brazil.
| |
Collapse
|