1
|
Lim T, Seo HS, Yang J, Yang KH, Ju S, Jeong SM. Reversible thermochromic fibers with excellent elasticity and hydrophobicity for wearable temperature sensors. RSC Adv 2024; 14:6156-6164. [PMID: 38375008 PMCID: PMC10875327 DOI: 10.1039/d3ra06432h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/31/2024] [Indexed: 02/21/2024] Open
Abstract
Color-changing fibers, which can intuitively convey information to the human eye, can be used to facilely add functionality to various types of clothing. However, they are often expensive and complex, and can suffer from low durability. Therefore, in this study, we developed highly elastic and hydrophobic thermochromic fibers as wearable temperature sensors using a simple method that does not require an electric current. A thermochromic pigment was embedded inside and outside hydrophobic silica aerogel particles, following which the thermochromic aerogel was fixed to highly elastic spandex fibers using polydimethylsiloxane as a flexible binder. In particular, multi-strand spandex fibers were used instead of single strands, resulting in the thermochromic aerogels penetrating the inside of the strands upon their expansion by solvent swelling. During drying, the thermochromic aerogel adhered more tightly to the fibers by compressing the strands. The thermochromic fiber was purple at room temperature (25 °C), but exhibited a two-stage color change to blue and then white as the temperature increased to 37 °C. In addition, even after 100 cycles of tension-contraction at 200%, the thermochromic aerogel did not detach and was strongly attached to the fiber. Additionally, it was confirmed that color change due to temperature was stable even after exposure to 1 wt% NaCl (artificial sweat) and 0.1 wt% detergent solutions. The developed thermochromic fiber therefore exhibited excellent elasticity and hydrophobicity, and is expected to be widely utilized as an economical wearable temperature sensor as it does not require electrical devices.
Collapse
Affiliation(s)
- Taekyung Lim
- Major in Nano Semiconductor, School of Electronic Engineering, Kyonggi University Suwon Gyeonggi-do 16227 Republic of Korea
| | - Hee Sung Seo
- Major in Nano Semiconductor, School of Electronic Engineering, Kyonggi University Suwon Gyeonggi-do 16227 Republic of Korea
| | - Jonguk Yang
- Major in Nano Semiconductor, School of Electronic Engineering, Kyonggi University Suwon Gyeonggi-do 16227 Republic of Korea
| | - Keun-Hyeok Yang
- Department of Architectural Engineering, Kyonggi University Suwon Gyeonggi-do 16227 Republic of Korea
| | - Sanghyun Ju
- Major in Nano Semiconductor, School of Electronic Engineering, Kyonggi University Suwon Gyeonggi-do 16227 Republic of Korea
| | - Sang-Mi Jeong
- Major in Nano Semiconductor, School of Electronic Engineering, Kyonggi University Suwon Gyeonggi-do 16227 Republic of Korea
| |
Collapse
|
2
|
Del Ferraro S, Falcone T, Morabito M, Bonafede M, Marinaccio A, Gao C, Molinaro V. Mitigating heat effects in the workplace with a ventilation jacket: Simulations of the whole-body and local human thermophysiological response with a sweating thermal manikin in a warm-dry environment. J Therm Biol 2024; 119:103772. [PMID: 38145612 DOI: 10.1016/j.jtherbio.2023.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023]
Abstract
Climate change is increasingly affecting human well-being and will inevitably impact on occupational sectors in terms of costs, productivity, workers' health and injuries. Among the cooling garment developed to reduce heat strain, the ventilation jacket could be considered for possible use in workplaces, as it is wearable without limiting the user's mobility and autonomy. In this study, simulations with a sweating manikin are carried out to investigate the effects of a short-sleeved ventilation jacket on human thermophysiological responses in a warm-dry scenario. Simulations were performed in a climatic chamber (air temperature = 30.1 °C; air velocity = 0.29 m/s; relative humidity = 30.0 %), considering two constant levels of metabolic rate M (M1 = 2.4 MET; M2 = 3.2 MET), a sequence of these two (Work), and three levels of fan velocities (lf = 0; lf=2; lf=4). The results revealed a more evident impact on the mean skin temperature (Tsk) compared to the rectal temperature (Tre), with significant decreases (compared to fan-off) at all M levels, for Tsk from the beginning and for Tre from the 61st minute. Skin temperatures of the torso zones decreased significantly (compared to fan-off) at all M levels, and a greater drop was registered for the Back. The fans at the highest level (lf=4) were significantly effective in improving whole-body and local thermal sensations when compared to fan-off, at all M levels. At the intermediate level (lf=2), the statistical significance varied with thermal zone, M and time interval considered. The results of the simulations also showed that the Lower Torso needs to be monitored at M2 level, as the drop in skin temperature could lead to local overcooling and thermal discomfort. Simulations showed the potential effectiveness of the ventilation jacket, but human trials are needed to verify its cooling power in real working conditions.
Collapse
Affiliation(s)
- Simona Del Ferraro
- Laboratory of Ergonomics and Physiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| | - Tiziana Falcone
- Laboratory of Ergonomics and Physiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| | - Marco Morabito
- Institute of BioEconomy (IBE), National Research Council, Via Madonna Del Piano 10, 50019, Sesto Fiorentino, FI, Italy; Centre of Bioclimatology, University of Florence, Piazzale Delle Cascine 18, 50144, Florence, Italy.
| | - Michela Bonafede
- Laboratory of Occupational and Environmental Epidemiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Stefano Gradi 55, 00143, Rome, Italy.
| | - Alessandro Marinaccio
- Laboratory of Occupational and Environmental Epidemiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Stefano Gradi 55, 00143, Rome, Italy.
| | - Chuansi Gao
- Aerosol and Climate Laboratory, Division of Ergonomics and Aerosol Technology, Department of Design Sciences, Faculty of Engineering, Lund University, Sölvegatan 26, Lund, Sweden.
| | - Vincenzo Molinaro
- Laboratory of Ergonomics and Physiology, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, 00078, Monte Porzio Catone, Rome, Italy.
| |
Collapse
|
3
|
Lin NW, Ramirez-Cardenas A, Wingate KC, King BS, Scott K, Hagan-Haynes K. Risk factors for heat-related illness resulting in death or hospitalization in the oil and gas extraction industry. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:58-67. [PMID: 37830911 PMCID: PMC10959173 DOI: 10.1080/15459624.2023.2268142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Many oil and gas extraction (OGE) activities occur in high-heat environments, resulting in a significant risk of heat-related illness among outdoor workers in this industry. This report highlights cases of occupational heat-related illness that resulted in death and identifies common risk factors for heat-related fatalities and hospitalizations among OGE workers. Two databases maintained by the National Institute for Occupational Safety and Health (NIOSH) and the Occupational Safety and Health Administration (OSHA) were reviewed to identify heat-related fatalities, hospitalizations, and associated risk factors among OGE workers. Nine fatalities and associated risk factors were identified during 2014-2019 from NIOSH's Fatalities in Oil and Gas Extraction (FOG) Database. Risk factors identified included those commonly associated with heat-related fatalities: new workers not acclimatized to heat, inadequate heat stress training, and underlying hypertension or cardiovascular disease. Of particular note, substance use was identified as a significant risk factor as more than half of the fatalities included a positive postmortem test for amphetamines or methamphetamines. Fifty heat-related hospitalizations were identified from OSHA's Severe Injury Report Database during January 2015-May 2021. Heat stress has been and will continue to be an important cause of fatality and adverse health effects in OGE as hot outdoor working conditions become more common and extreme. More emphasis on heat stress training, acclimatization regimens, medical screening, and implementation of workplace-supportive recovery programs may reduce heat-related fatalities and injuries in this industry.
Collapse
Affiliation(s)
- Nancy W. Lin
- Department of Environmental and Occupational Health,
Colorado School of Public Health, University of Colorado, CU Anschutz, Aurora,
Colorado
| | | | - Kaitlin C. Wingate
- National Institute for Occupational Safety and Health
(NIOSH) Western States Division, Denver, Colorado
| | - Bradley S. King
- National Institute for Occupational Safety and Health
(NIOSH) Western States Division, Denver, Colorado
| | - Kenneth Scott
- National Institute for Occupational Safety and Health
(NIOSH) Western States Division, Denver, Colorado
| | - Kyla Hagan-Haynes
- National Institute for Occupational Safety and Health
(NIOSH) Western States Division, Denver, Colorado
| |
Collapse
|