1
|
Piva VM, De Grandis MC, Zuin IS, Angerilli V, Nappo F, Alfieri R, Ahcene Djaballah S, Murgioni S, Bergamo F, Fassan M, Valmasoni M, Lonardi S. ctDNA as promising tool for the assessment of minimal residual disease (MRD) and the need of an adjuvant treatment in gastroesophageal adenocarcinoma. Updates Surg 2023; 75:305-312. [PMID: 36272058 DOI: 10.1007/s13304-022-01379-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/12/2022] [Indexed: 01/24/2023]
Abstract
Gastroesophageal adenocarcinoma is a challenging disease due to its poor prognosis and the presence of few therapeutic options. For these reasons, it is mandatory to identify the subgroup of patients who are at high risk for relapse after curative-intention surgery. In the last years, liquid biopsy has aroused great interest in cancer treatment for its feasibility and the possibility to capture tumor heterogeneity in a real-time way. In postoperative setting, the interest is directed to the identification of Minimal Residual Disease (MRD), defined as isolated or small cluster of cancer cells that residues after curative-intention surgery, and are undetectable by conventional radiological and clinical exams. This review wants to summarize current evidence on the use of liquid biopsy in gastroesophageal cancer, focusing on the detection of ctDNA in the postoperative setting and its potential role as a guide for treatment decision.
Collapse
Affiliation(s)
- Vittoria Matilde Piva
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Maria Caterina De Grandis
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Irene Sole Zuin
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Surgery Clinic 1, Padova University Hospital, Padua, Italy
| | - Valentina Angerilli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
| | - Floriana Nappo
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Rita Alfieri
- Unit of Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Selma Ahcene Djaballah
- Medical Oncology 3, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128, Padua, Italy
| | - Sabina Murgioni
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Francesca Bergamo
- Medical Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Michele Valmasoni
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Surgery Clinic 1, Padova University Hospital, Padua, Italy
| | - Sara Lonardi
- Medical Oncology 3, Veneto Institute of Oncology IOV-IRCCS, Via Gattamelata 64, 35128, Padua, Italy.
| |
Collapse
|
2
|
Hegedüs L, Szücs KD, Kudla M, Heidenreich J, Jendrossek V, Peña-Llopis S, Garay T, Czirok A, Aigner C, Plönes T, Vega-Rubin-de-Celis S, Hegedüs B. Nintedanib and Dasatinib Treatments Induce Protective Autophagy as a Potential Resistance Mechanism in MPM Cells. Front Cell Dev Biol 2022; 10:852812. [PMID: 35392170 PMCID: PMC8982261 DOI: 10.3389/fcell.2022.852812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare type of cancer with a grim prognosis. So far, no targetable oncogenic mutation was identified in MPM and biomarkers with predictive value toward drug sensitivity or resistance are also lacking. Nintedanib (BIBF1120) is a small-molecule tyrosine kinase inhibitor that showed promising efficacy preclinically and in phase II trial in MPM as an angiogenesis inhibitor combined with chemotherapy. However, the extended phase III trial failed. In this study, we investigated the effect of nintedanib on one of its targets, the SRC kinase, in two commercial and six novel MPM cell lines. Surprisingly, nintedanib treatment did not inhibit SRC activation in MPM cells and even increased phosphorylation of SRC in several cell lines. Combination treatment with the SRC inhibitor dasatinib could reverse this effect in all cell lines, however, the cellular response was dependent on the drug sensitivity of the cells. In 2 cell lines, with high sensitivity to both nintedanib and dasatinib, the drug combination had no synergistic effect but cell death was initiated. In 2 cell lines insensitive to nintedanib combination treatment reduced cell viability synergisticaly without cell death. In contrast, in these cells both treatments increased the autophagic flux assessed by degradation of the autophagy substrate p62 and increased presence of LC3B-II, increased number of GFP-LC3 puncta and decreased readings of the HiBiT-LC3 reporter. Additionaly, autophagy was synergistically promoted by the combined treatment. At the transcriptional level, analysis of lysosomal biogenesis regulator Transcription Factor EB (TFEB) showed that in all cell lines treated with nintedanib and to a lesser extent, with dasatinib, it became dephosphorylated and accumulated in the nucleus. Interestingly, the expression of certain known TFEB target genes implicated in autophagy or lysosomal biogenesis were significantly modified only in 1 cell line. Finally, we showed that autophagy induction in our MPM cell lines panel by nintedanib and dasatinib is independent of the AKT/mTOR and the ERK pathways. Our study reveals that autophagy can serve as a cytoprotective mechanism following nintedanib or dasatinib treatments in MPM cells.
Collapse
Affiliation(s)
- Luca Hegedüs
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - Kata D. Szücs
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - Matthias Kudla
- Institute of Cell Biology (Cancer Research), Essen University Hospital, Essen, Germany
| | - Julian Heidenreich
- Translational Genomics in Solid Tumors, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) at the University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), Essen University Hospital, Essen, Germany
| | - Samuel Peña-Llopis
- Translational Genomics in Solid Tumors, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) at the University Hospital Essen, Essen, Germany
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tamas Garay
- Faculty of Information Technology and Bionics, Pazmany Peter Catholic University, Budapest, Hungary
- Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Andras Czirok
- Department of Biological Physics, Eötvös University, Budapest, Hungary
| | - Clemens Aigner
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - Till Plönes
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - Silvia Vega-Rubin-de-Celis
- Institute of Cell Biology (Cancer Research), Essen University Hospital, Essen, Germany
- *Correspondence: Silvia Vega-Rubin-de-Celis, , ; Balazs Hegedüs,
| | - Balazs Hegedüs
- Department of Thoracic Surgery, University Medicine Essen - Ruhrlandklinik, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Silvia Vega-Rubin-de-Celis, , ; Balazs Hegedüs,
| |
Collapse
|
3
|
Liu X, Yang J, Yang C, Huang X, Han M, Kang F, Li J. Morphine promotes the malignant biological behavior of non-small cell lung cancer cells through the MOR/Src/mTOR pathway. Cancer Cell Int 2021; 21:622. [PMID: 34823532 PMCID: PMC8613927 DOI: 10.1186/s12935-021-02334-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Morphine, a µ-opioid receptor (MOR) agonist, has been shown to be related to the activity of cancer cells, and a higher morphine dosage reduces the survival time of patients with lung cancer. However, the effect of morphine on the malignant behavior of lung cancer cells remains unclear. The aim of this study was to investigate the specific molecular mechanism by which morphine regulates the malignant biological behavior of non-small cell lung cancer. METHODS Immunofluorescence staining and Western blot analyses were performed to detect MOR expression. H460 non-small cell lung cancer cells were used in this study, and cell proliferation, the cell cycle and apoptosis were evaluated using Cell Counting Kit-8 (CCK-8) and flow cytometry assays, respectively. Cell migration and invasion were detected using wound healing and Transwell assays. The effect of morphine on lung cancer development in vivo was examined by performing a xenograft tumor assay following morphine treatment. RESULTS Morphine promoted the growth of H460 cells both in vivo and in vitro. Morphine enhanced cell migration and invasion, modified cell cycle progression through the S/G2 transition and exerted an antiapoptotic effect on H460 cells. Additionally, morphine increased Rous sarcoma oncogene cellular homolog (Src) phosphorylation and activated the phosphoinositide 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway. Treatment with the MOR antagonist methylnaltrexone (MNTX) and the Src inhibitor protein phosphatase 1 (PP1) reduced the phosphorylation induced by morphine. Furthermore, MNTX, PP1, and the PI3K/AKT inhibitor deguelin reversed the antiapoptotic effect of morphine on lung cancer cells. CONCLUSION Morphine promotes the malignant biological behavior of H460 cells by activating the MOR and Src/mTOR signaling pathways.
Collapse
Affiliation(s)
- Xingyun Liu
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230036, China
| | - Jia Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Chengwei Yang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Xiang Huang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Mingming Han
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Fang Kang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Juan Li
- Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, 230036, China.
| |
Collapse
|
4
|
Ollila H, Paajanen J, Wolff H, Ilonen I, Sutinen E, Välimäki K, Östman A, Anttila S, Kettunen E, Räsänen J, Kallioniemi O, Myllärniemi M, Mäyränpää MI, Pellinen T. High tumor cell platelet-derived growth factor receptor beta expression is associated with shorter survival in malignant pleural epithelioid mesothelioma. J Pathol Clin Res 2021; 7:482-494. [PMID: 33955203 PMCID: PMC8363931 DOI: 10.1002/cjp2.218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/10/2021] [Accepted: 04/01/2021] [Indexed: 11/11/2022]
Abstract
Malignant pleural mesothelioma (MPM) has a rich stromal component containing mesenchymal fibroblasts. However, the properties and interplay of MPM tumor cells and their surrounding stromal fibroblasts are poorly characterized. Our objective was to spatially profile known mesenchymal markers in both tumor cells and associated fibroblasts and correlate their expression with patient survival. The primary study cohort consisted of 74 MPM patients, including 16 patients who survived at least 60 months. We analyzed location-specific tissue expression of seven fibroblast markers in clinical samples using multiplexed fluorescence immunohistochemistry (mfIHC) and digital image analysis. Effect on survival was assessed using Cox regression analyses. The outcome measurement was all-cause mortality. Univariate analysis revealed that high expression of secreted protein acidic and cysteine rich (SPARC) and fibroblast activation protein in stromal cells was associated with shorter survival. Importantly, high expression of platelet-derived growth factor receptor beta (PDGFRB) in tumor cells, but not in stromal cells, was associated with shorter survival (hazard ratio [HR] = 1.02, p < 0.001). A multivariable survival analysis adjusted for clinical parameters and stromal mfIHC markers revealed that tumor cell PDGFRB and stromal SPARC remained independently associated with survival (HR = 1.01, 95% confidence interval [CI] = 1.00-1.03 and HR = 1.05, 95% CI = 1.00-1.11, respectively). The prognostic effect of PDGFRB was validated with an artificial intelligence-based analysis method and further externally validated in another cohort of 117 MPM patients. In external validation, high tumor cell PDGFRB expression associated with shorter survival, especially in the epithelioid subtype. Our findings suggest PDGFRB and SPARC as potential markers for risk stratification and as targets for therapy.
Collapse
Affiliation(s)
- Hely Ollila
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Pulmonary MedicineHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Juuso Paajanen
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Pulmonary MedicineHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Henrik Wolff
- Laboratory of PathologyFinnish Institute of Occupational HealthHelsinkiFinland
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Ilkka Ilonen
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of General Thoracic and Esophageal SurgeryHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Eva Sutinen
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Pulmonary MedicineHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Katja Välimäki
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Arne Östman
- Department of Oncology‐PathologyKarolinska InstitutetSolnaSweden
| | - Sisko Anttila
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Eeva Kettunen
- Laboratory of PathologyFinnish Institute of Occupational HealthHelsinkiFinland
| | - Jari Räsänen
- Department of General Thoracic and Esophageal SurgeryHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| | - Marjukka Myllärniemi
- Individualized Drug Therapy Research Program, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Department of Pulmonary MedicineHeart and Lung Center, University of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Mikko I Mäyränpää
- Department of PathologyUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFinland
| |
Collapse
|
5
|
Karunakaran KB, Yanamala N, Boyce G, Becich MJ, Ganapathiraju MK. Malignant Pleural Mesothelioma Interactome with 364 Novel Protein-Protein Interactions. Cancers (Basel) 2021; 13:1660. [PMID: 33916178 PMCID: PMC8037232 DOI: 10.3390/cancers13071660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer affecting the outer lining of the lung, with a median survival of less than one year. We constructed an 'MPM interactome' with over 300 computationally predicted protein-protein interactions (PPIs) and over 2400 known PPIs of 62 literature-curated genes whose activity affects MPM. Known PPIs of the 62 MPM associated genes were derived from Biological General Repository for Interaction Datasets (BioGRID) and Human Protein Reference Database (HPRD). Novel PPIs were predicted by applying the HiPPIP algorithm, which computes features of protein pairs such as cellular localization, molecular function, biological process membership, genomic location of the gene, and gene expression in microarray experiments, and classifies the pairwise features as interacting or non-interacting based on a random forest model. We validated five novel predicted PPIs experimentally. The interactome is significantly enriched with genes differentially ex-pressed in MPM tumors compared with normal pleura and with other thoracic tumors, genes whose high expression has been correlated with unfavorable prognosis in lung cancer, genes differentially expressed on crocidolite exposure, and exosome-derived proteins identified from malignant mesothelioma cell lines. 28 of the interactors of MPM proteins are targets of 147 U.S. Food and Drug Administration (FDA)-approved drugs. By comparing disease-associated versus drug-induced differential expression profiles, we identified five potentially repurposable drugs, namely cabazitaxel, primaquine, pyrimethamine, trimethoprim and gliclazide. Preclinical studies may be con-ducted in vitro to validate these computational results. Interactome analysis of disease-associated genes is a powerful approach with high translational impact. It shows how MPM-associated genes identified by various high throughput studies are functionally linked, leading to clinically translatable results such as repurposed drugs. The PPIs are made available on a webserver with interactive user interface, visualization and advanced search capabilities.
Collapse
Affiliation(s)
- Kalyani B. Karunakaran
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560012, India;
| | - Naveena Yanamala
- Exposure Assessment Branch, National Institute of Occupational Safety and Health, Center for Disease Control, Morgantown, WV 26506, USA; (N.Y.); (G.B.)
| | - Gregory Boyce
- Exposure Assessment Branch, National Institute of Occupational Safety and Health, Center for Disease Control, Morgantown, WV 26506, USA; (N.Y.); (G.B.)
| | - Michael J. Becich
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15206, USA;
| | - Madhavi K. Ganapathiraju
- Department of Biomedical Informatics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15206, USA;
- Intelligent Systems Program, School of Computing and Information, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Yang H, Xu D, Schmid RA, Peng RW. Biomarker-guided targeted and immunotherapies in malignant pleural mesothelioma. Ther Adv Med Oncol 2020; 12:1758835920971421. [PMID: 33240401 PMCID: PMC7672749 DOI: 10.1177/1758835920971421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a lethal thoracic malignancy whose incidence is still increasing worldwide. MPM is characterized by frequent inactivation of tumor-suppressor genes (TSGs), e.g., the homozygous deletion of CDKN2A/2B and various genetic alterations that inactivate BAP1, NF2, LATS1/2, and TP53. The leading cause for the poor prognosis of patients with MPM is the lack of effective treatment options, with conventional chemotherapy being the standard of care in the clinic, which has remained unchanged for almost 20 years. Precision oncology, a burgeoning effort to provide precise cancer treatment tailored to unique molecular changes in individual patients, has made tremendous progress in the last decade in several cancers, but not in MPM. Recent studies indicate a high degree of tumor heterogeneity in MPM and the importance to optimize histological and molecular classifications for improved treatment. In this review, we provide an up-to-date overview of recent advances in MPM by focusing on new stratifications of tumor subgroups, specific vulnerabilities associated with functional loss of TSGs and other biomarkers, and potential clinical implications. The molecularly based subdivisions not only deepen our understanding of MPM pathobiology, but more importantly, they may raise unprecedented new hopes for personalized treatment of MPM patients with biomarker-guided targeted and immunotherapies.
Collapse
Affiliation(s)
- Haitang Yang
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Duo Xu
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Ralph A. Schmid
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, Bern, 3010, Switzerland
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, Bern, 3010, Switzerland
| |
Collapse
|
7
|
Chen R, Lee WC, Fujimoto J, Li J, Hu X, Mehran R, Rice D, Swisher SG, Sepesi B, Tran HT, Chow CW, Little LD, Gumbs C, Haymaker C, Heymach JV, Wistuba II, Lee JJ, Futreal PA, Zhang J, Reuben A, Tsao AS, Zhang J. Evolution of Genomic and T-cell Repertoire Heterogeneity of Malignant Pleural Mesothelioma Under Dasatinib Treatment. Clin Cancer Res 2020; 26:5477-5486. [PMID: 32816946 PMCID: PMC7709879 DOI: 10.1158/1078-0432.ccr-20-1767] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/30/2020] [Accepted: 08/05/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Malignant pleural mesothelioma (MPM) is considered an orphan disease with few treatment options. Despite multimodality therapy, the majority of MPMs recur and eventually become refractory to any systemic treatment. One potential mechanism underlying therapeutic resistance may be intratumor heterogeneity (ITH), making MPM challenging to eradicate. However, the ITH architecture of MPM and its clinical impact have not been well studied. EXPERIMENTAL DESIGN We delineated the immunogenomic ITH by multiregion whole-exome sequencing and T-cell receptor (TCR) sequencing of 69 longitudinal MPM specimens from nine patients with resectable MPM, who were treated with dasatinib. RESULTS The median total mutation burden before dasatinib treatment was 0.65/Mb, similar with that of post-dasatinib treatment (0.62/Mb). The median proportion of mutations shared by any given pair of two tumor regions within the same tumors was 80% prior to and 83% post-dasatinib treatment indicating a relatively homogenous genomic landscape. T-cell clonality, a parameter indicating T-cell expansion and reactivity, was significantly increased in tumors after dasatinib treatment. Furthermore, on average, 82% of T-cell clones were restricted to individual tumor regions, with merely 6% of T-cell clones shared by all regions from the same tumors indicating profound TCR heterogeneity. Interestingly, patients with higher T-cell clonality and higher portion of T cells present across all tumor regions in post-dasatinib-treated tumors had significantly longer survival. CONCLUSIONS Despite the homogeneous genomic landscape, the TCR repertoire is extremely heterogeneous in MPM. Dasatinib may potentially induce T-cell response leading to improved survival.
Collapse
MESH Headings
- Adult
- Aged
- Clonal Evolution/genetics
- Dasatinib/administration & dosage
- Dasatinib/adverse effects
- Evolution, Molecular
- Female
- Genetic Heterogeneity
- Genome, Human/drug effects
- Genomics
- Humans
- Male
- Mesothelioma, Malignant/drug therapy
- Mesothelioma, Malignant/genetics
- Mesothelioma, Malignant/pathology
- Middle Aged
- Mutation/genetics
- Neoplasm Proteins/genetics
- Neoplasm Recurrence, Local/drug therapy
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Progression-Free Survival
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes/drug effects
- T-Lymphocytes/pathology
- Exome Sequencing
Collapse
Affiliation(s)
- Runzhe Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Won-Chul Lee
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jun Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Reza Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Rice
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hai T Tran
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chi-Wan Chow
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Latasha D Little
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Curtis Gumbs
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Yang H, Xu D, Yang Z, Yao F, Zhao H, Schmid RA, Peng RW. Systematic Analysis of Aberrant Biochemical Networks and Potential Drug Vulnerabilities Induced by Tumor Suppressor Loss in Malignant Pleural Mesothelioma. Cancers (Basel) 2020; 12:E2310. [PMID: 32824422 PMCID: PMC7465812 DOI: 10.3390/cancers12082310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Malignant pleural mesothelioma (MPM) is driven by the inactivation of tumor suppressor genes (TSGs). An unmet need in the field is the translation of the genomic landscape into effective TSG-specific therapies. Methods: We correlated genomes against transcriptomes of patients' MPM tumors, by weighted gene co-expression network analysis (WGCNA). The identified aberrant biochemical networks and potential drug targets induced by tumor suppressor loss were validated by integrative data analysis and functional interrogation. Results: CDKN2A/2B loss activates G2/M checkpoint and PI3K/AKT, prioritizing a co-targeting strategy for CDKN2A/2B-null MPM. CDKN2A deficiency significantly co-occurs with deletions of anti-viral type I interferon (IFN-I) genes and BAP1 mutations, that enriches the IFN-I signature, stratifying a unique subset, with deficient IFN-I, but proficient BAP1 for oncolytic viral immunotherapies. Aberrant p53 attenuates differentiation and SETD2 loss acquires the dependency on EGFRs, highlighting the potential of differentiation therapy and pan-EGFR inhibitors for these subpopulations, respectively. LATS2 deficiency is linked with dysregulated immunoregulation, suggesting a rationale for immune checkpoint blockade. Finally, multiple lines of evidence support Dasatinib as a promising therapeutic for LATS2-mutant MPM. Conclusions: Systematic identification of abnormal cellular processes and potential drug vulnerabilities specified by TSG alterations provide a framework for precision oncology in MPM.
Collapse
Affiliation(s)
- Haitang Yang
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China; (F.Y.); (H.Z.)
| | - Duo Xu
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
| | - Zhang Yang
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China; (F.Y.); (H.Z.)
| | - Heng Zhao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China; (F.Y.); (H.Z.)
| | - Ralph A. Schmid
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 50, CH3008 Bern, Switzerland; (H.Y.); (D.X.); (Z.Y.)
| |
Collapse
|
9
|
Indovina P, Forte IM, Pentimalli F, Giordano A. Targeting SRC Family Kinases in Mesothelioma: Time to Upgrade. Cancers (Basel) 2020; 12:cancers12071866. [PMID: 32664483 PMCID: PMC7408838 DOI: 10.3390/cancers12071866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/24/2022] Open
Abstract
Malignant mesothelioma (MM) is a deadly tumor mainly caused by exposure to asbestos. Unfortunately, no current treatment is able to change significantly the natural history of the disease, which has a poor prognosis in the majority of patients. The non-receptor tyrosine kinase SRC and other SRC family kinase (SFK) members are frequently hyperactivated in many cancer types, including MM. Several works have indeed suggested that SFKs underlie MM cell proliferation, survival, motility, and invasion, overall affecting multiple oncogenic pathways. Consistently, SFK inhibitors effectively counteracted MM cancerous features at the preclinical level. Dasatinib, a multi-kinase inhibitor targeting SFKs, was also assessed in clinical trials either as second-line treatment for patients with unresectable MM or, more recently, as a neoadjuvant agent in patients with resectable MM. Here, we provide an overview of the molecular mechanisms implicating SFKs in MM progression and discuss possible strategies for a more successful clinical application of SFK inhibitors. Our aim is to stimulate discussion and further consideration of these agents in better designed preclinical and clinical studies to make the most of another class of powerful antitumoral drugs, which too often are lost in translation when applied to MM.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Institute for High Performance Computing and Networking, National Research Council of Italy (ICAR-CNR), I-80131 Naples, Italy
- Correspondence: (P.I.); (F.P.)
| | - Iris Maria Forte
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Naples, Italy;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Naples, Italy;
- Correspondence: (P.I.); (F.P.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
| |
Collapse
|
10
|
Tsao AS, Lindwasser OW, Adjei AA, Adusumilli PS, Beyers ML, Blumenthal GM, Bueno R, Burt BM, Carbone M, Dahlberg SE, de Perrot M, Fennell DA, Friedberg J, Gill RR, Gomez DR, Harpole DH, Hassan R, Hesdorffer M, Hirsch FR, Hmeljak J, Kindler HL, Korn EL, Liu G, Mansfield AS, Nowak AK, Pass HI, Peikert T, Rimner A, Robinson BWS, Rosenzweig KE, Rusch VW, Salgia R, Sepesi B, Simone CB, Sridhara R, Szlosarek P, Taioli E, Tsao MS, Yang H, Zauderer MG, Malik SM. Current and Future Management of Malignant Mesothelioma: A Consensus Report from the National Cancer Institute Thoracic Malignancy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation. J Thorac Oncol 2018; 13:1655-1667. [PMID: 30266660 DOI: 10.1016/j.jtho.2018.08.2036] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
Abstract
On March 28- 29, 2017, the National Cancer Institute (NCI) Thoracic Malignacy Steering Committee, International Association for the Study of Lung Cancer, and Mesothelioma Applied Research Foundation convened the NCI-International Association for the Study of Lung Cancer- Mesothelioma Applied Research Foundation Mesothelioma Clinical Trials Planning Meeting in Bethesda, Maryland. The goal of the meeting was to bring together lead academicians, clinicians, scientists, and the U.S. Food and Drug Administration to focus on the development of clinical trials for patients in whom malignant pleural mesothelioma has been diagnosed. In light of the discovery of new cancer targets affecting the clinical development of novel agents and immunotherapies in malignant mesothelioma, the objective of this meeting was to assemble a consensus on at least two or three practice-changing multimodality clinical trials to be conducted through NCI's National Clinical Trials Network.
Collapse
Affiliation(s)
- Anne S Tsao
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - O Wolf Lindwasser
- Coordinating Center for Clinical Trials, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alex A Adjei
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota
| | - Prasad S Adusumilli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Raphael Bueno
- Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Bryan M Burt
- Department of Surgery, Division of Thoracic Surgery, Baylor College of Medicine, Houston, Texas
| | | | - Suzanne E Dahlberg
- Department of Biostatistics, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Marc de Perrot
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, Ontario, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dean A Fennell
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom; University Hospitals of Leicester, Leicester, United Kingdom
| | - Joseph Friedberg
- Department of Thoracic Surgery, University of Maryland Cancer Center, Baltimore, Maryland
| | - Ritu R Gill
- Department of Radiology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Daniel R Gomez
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - David H Harpole
- Division of Cardiothoracic Surgery, Department of Surgery, Duke University, Durham, North Carolina
| | - Raffit Hassan
- Thoracic and GI Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mary Hesdorffer
- Mesothelioma Applied Research Foundation, Alexandria, Virginia
| | - Fred R Hirsch
- University of Colorado Cancer Center, IASLC, Denver, Colorado
| | | | - Hedy L Kindler
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, Illinois
| | - Edward L Korn
- Biometric Research Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | | | - Anna K Nowak
- Medical School, University of Western Australia, Perth, Western Australia, Australia; National Center for Asbestos Related Diseases, University of Western Australia, Perth, Western Australia, Australia
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, New York University, Langone Medical Center, New York, New York
| | - Tobias Peikert
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, Minnesota
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bruce W S Robinson
- National Centre for Asbestos Related Disease, University of Western Australia, Nedlands, Western Australia, Australia; Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Kenneth E Rosenzweig
- Department of Radiation Oncology, Mount Sinai Medical Center, New York, New York
| | - Valerie W Rusch
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope, Duarte, California
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland
| | | | - Peter Szlosarek
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Emanuela Taioli
- Epidemiology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Thoracic Surgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ming-Sound Tsao
- Department of Pathology, University of Toronto, Toronto, Ontario, Canada; Department of Pathology, Princess Margaret Cancer Centre/University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Haining Yang
- Department of Surgery, Division of Thoracic Surgery, Baylor College of Medicine, Houston, Texas
| | - Marjorie G Zauderer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shakun M Malik
- Clinical Investigations Branch, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
11
|
Targeting the Hippo Pathway Is a New Potential Therapeutic Modality for Malignant Mesothelioma. Cancers (Basel) 2018; 10:cancers10040090. [PMID: 29565815 PMCID: PMC5923345 DOI: 10.3390/cancers10040090] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Malignant mesothelioma (MM) constitutes a very aggressive tumor that arises from the pleural or peritoneal cavities and is highly refractory to conventional therapies. Several key genetic alterations are associated with the development and progression of MM including mutations of the CDKN2A/ARF, NF2, and BAP1 tumor-suppressor genes. Notably, activating oncogene mutations are very rare; thus, it is difficult to develop effective inhibitors to treat MM. The NF2 gene encodes merlin, a protein that regulates multiple cell-signaling cascades including the Hippo pathway. MMs also exhibit inactivation of Hippo pathway components including LATS1/2, strongly suggesting that merlin-Hippo pathway dysregulation plays a key role in the development and progression of MM. Furthermore, Hippo pathway inactivation has been shown to result in constitutive activation of the YAP1/TAZ transcriptional coactivators, thereby conferring malignant phenotypes to mesothelial cells. Critical YAP1/TAZ target genes, including prooncogenic CCDN1 and CTGF, have also been shown to enhance the malignant phenotypes of MM cells. Together, these data indicate the Hippo pathway as a therapeutic target for the treatment of MM, and support the development of new strategies to effectively target the activation status of YAP1/TAZ as a promising therapeutic modality for this formidable disease.
Collapse
|