1
|
Arrieta O, Lara-Mejía L, Rios-Garcia E, Caballé-Perez E, Cabrera-Miranda L, Ramos-Ramírez M, Dávila-Dupont D, Cardona AF, Cruz-Rico G, Remon J, Garcilazo-Reyes A, Rosell R. Alectinib in combination with bevacizumab as first-line treatment in ALK-rearranged non-small cell lung cancer (ALEK-B): a single-arm, phase 2 trial. Nat Commun 2025; 16:4553. [PMID: 40379690 PMCID: PMC12084566 DOI: 10.1038/s41467-025-59744-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 05/04/2025] [Indexed: 05/19/2025] Open
Abstract
Up to 25% of patients with ALK-rearranged non-small cell lung cancer (NSCLC) experience disease progression within the first year of targeted therapy. This phase 2 trial investigates whether combining alectinib with bevacizumab can delay resistance mechanisms in advanced ALK-rearranged NSCLC. ALEK-B was an open-label, single-arm, single-center phase 2 trial (NCT03779191) evaluating alectinib (600 mg BID) and bevacizumab (15 mg/kg) in patients with advanced ALK-rearranged NSCLC confirmed by next-generation sequencing. The primary endpoint was the 12-month progression-free survival (PFS). Secondary endpoints included overall survival (OS), objective response rate (ORR), intracranial progression-free survival (icPFS), safety, and patient-reported quality of life (QoL). Between April 2020 and August 2022, 41 patients were enrolled, including 17.1% with brain metastases. As of December 14, 2023, with a median follow-up of 34.5 months, the 12-month PFS rate was 97.1% (95% CI 92.6-100). The 36-month PFS and OS rates were 64.2% (95% CI 56.1-85.2) and 87.9% (95% CI 74-96.6), respectively. The ORR was 100%, and the 36-month icPFS rate was 87.8% (95% CI 74.0-96.6). Grade 3-4 adverse events occurred in 46.3% of patients, most commonly proteinuria and hepatotoxicity, with no fatal events reported. QoL significantly improved from baseline at 12 months and was maintained through 36 months. These findings support the efficacy and safety of alectinib plus bevacizumab and justify further investigation in ALK-rearranged NSCLC.
Collapse
Affiliation(s)
- Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, México.
| | - Luis Lara-Mejía
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, México
| | - Eduardo Rios-Garcia
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, México
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
| | - Enrique Caballé-Perez
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, México
| | - Luis Cabrera-Miranda
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, México
| | - Maritza Ramos-Ramírez
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, México
| | - David Dávila-Dupont
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, México
| | - Andrés F Cardona
- Direction of Research, Science, and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá, Colombia
| | - Graciela Cruz-Rico
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCan), Mexico City, México
| | - Jordi Remon
- Department of Cancer Medicine, Gustave Roussy, Villejuif, France
| | | | - Rafael Rosell
- Oncology Institute Dr. Rosell, IOR, Dexeus University Hospital, Barcelona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
2
|
Naulleau G, Birsen G, Mansuet-Lupo A, Leroy K, Wislez M. [ALK rearrangement in non-small cell lung cancer]. Bull Cancer 2025; 112:3S86-3S94. [PMID: 40155081 DOI: 10.1016/s0007-4551(25)00161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The discovery of ALK gene rearrangement in 3 to 5% of non-small cell lung carcinomas has revolutionized our understanding and therapeutic approach of these cancers. This oncogenic driver is associated with specific clinical and biological features is associated with specific clinical and biological features, mainly affecting young and never-smoker patients, with a particular tropism for brain metastases. The development of ALK tyrosine kinase inhibitors has transformed patient outcomes, with remarkable efficacy of latest-generation molecules, particularly in controlling brain metastases. However, the emergence of complex resistance mechanisms, whether ALK-dependent or ALK-independent, remains a major challenge. The comprehensive understanding of these resistance mechanisms now guides the development of next-generation inhibitors and innovative therapeutic strategies, paving the way for increasingly personalized precision medicine.
Collapse
Affiliation(s)
- Gaspard Naulleau
- Service de Pneumologie, Unité d'Oncologie Thoracique, Hôpital Cochin, AP-HP. Centre, Université Paris Cité, Paris, France
| | - Gary Birsen
- Service de Pneumologie, Unité d'Oncologie Thoracique, Hôpital Cochin, AP-HP. Centre, Université Paris Cité, Paris, France.
| | - Audrey Mansuet-Lupo
- Service d'Anatomie Pathologique, Hôpital Cochin, AP-HP.Centre, Université Paris Cité, Paris, France; Équipe « Inflammation, Complément et Cancer », INSERM U1138, Centre de Recherche des Cordeliers, Université Paris Cité, Paris, France
| | - Karen Leroy
- Service de Biochimie, Unité d'Oncogénétique Somatique Théranostique et Pharmacogénétique, Hôpital Européen Georges Pompidou, AP-HP.Centre, Université Paris Cité, Paris, France
| | - Marie Wislez
- Service de Pneumologie, Unité d'Oncologie Thoracique, Hôpital Cochin, AP-HP. Centre, Université Paris Cité, Paris, France; Équipe « Inflammation, Complément et Cancer », INSERM U1138, Centre de Recherche des Cordeliers, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Huang X, Zhou L, Xia J, Jian H, Liu J, Huang Y, Chen Q. Ensartinib for EML4-ALK-positive lung adenocarcinoma with comorbid mutations in TP53, EGFR, and ERBB2: a case report. Front Oncol 2025; 15:1520287. [PMID: 40052122 PMCID: PMC11883823 DOI: 10.3389/fonc.2025.1520287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/24/2025] [Indexed: 03/09/2025] Open
Abstract
Background In non-small cell lung cancer (NSCLC), anaplastic lymphoma kinase (ALK) gene rearrangements are commonly detected in lung adenocarcinoma. ALK-positive (ALK+) patients may occasionally exhibit concurrent genetic alterations that potentially impact prognosis. New therapeutic strategies are needed for ALK+ NSCLC patients with multiple simultaneous gene mutations. Case presentation A 58-year-old man was diagnosed with lung adenocarcinoma (stage IVB, T4N3M1c) with an echinoderm microtubule-associated protein-like 4-ALK+ (EML4-ALK+) rearrangement, harboring tumor protein 53 (TP53), epidermal growth factor receptor (EGFR), and receptor tyrosine-protein kinase erbB-2 (ERBB2) mutations. After three cycles of chemotherapy, the patient developed intolerance. Subsequently, ensartinib (225 mg daily) was administered orally on April 14, 2021. After 3 months of ensartinib treatment, the patient achieved a partial response and reached stable disease at six months, which sustained for 30 months till April 8, 2024, with grade 1 rash and no brain metastases. Currently, the patient remains on ensartinib treatment, without disease progression. Conclusion This case demonstrates the potential for ensartinib in the treatment of EML4-ALK+ lung adenocarcinoma with multiple gene mutations. Further investigation through clinical trials is needed to evaluate the safety and efficacy of this targeted therapy.
Collapse
Affiliation(s)
- Xiaoqing Huang
- Department of Oncology and Hematology, The Second People's Hospital of
Foshan, Foshan, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Poei D, Ali S, Thomas JS, Nieva JJ, Hsu RC. Real-World Incidence of Anaplastic Lymphoma Kinase Alterations in Hispanics with Non-Small Cell Lung Cancer at a Large Academic Institution in Los Angeles. CANCER RESEARCH COMMUNICATIONS 2025; 5:277-286. [PMID: 39807831 PMCID: PMC11808653 DOI: 10.1158/2767-9764.crc-24-0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
SIGNIFICANCE This study identified a higher incidence of ALK alterations in Hispanic patients with NSCLC (12.76%) compared with that in non-Hispanic patients (5.36%) treated at a large academic center in Los Angeles, highlighting the impact of race on molecular alteration profiles and emphasizing the need to increase access to molecular analyses for this population. The variability in mutational alterations may be influenced by biological and environmental factors.
Collapse
Affiliation(s)
- Darin Poei
- Department of Medicine, University of Southern California, Los Angeles, California
| | - Sana Ali
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Jacob S. Thomas
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Jorge J. Nieva
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| | - Robert C. Hsu
- Division of Medical Oncology, Department of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, California
| |
Collapse
|
5
|
Chan SWS, Zeng J, Young J, Barghout SH, Al-Agha F, Raptis S, Brown MC, Liu G, Juergens R, Jao K. A Poor Prognostic ALK Phenotype: A Review of Molecular Markers of Poor Prognosis in ALK Rearranged Nonsmall Cell Lung Cancer. Clin Lung Cancer 2025; 26:e22-e32.e2. [PMID: 39578168 DOI: 10.1016/j.cllc.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Patients with nonsmall cell lung cancer with anaplastic lymphoma kinase (ALK) rearrangements derive a significant and durable clinical benefit from tyrosine kinase inhibitors (TKIs). However, early progression/death on treatment occurs in a subset of patients, which we term the poor prognostic ALK phenotype. This review aims to summarize the known molecular mechanisms that underlie this phenotype with a focus on variant 3 and TP53 mutations. METHODS A scoping review was performed using scientific databases such as Ovid Medline, Ovid Embase, and Cochrane Central Register of Controlled Trials. Studies included molecular markers of poor prognosis, with a focus on TP53 mutations, variant 3 re-arrangements, and poor clinical response to TKIs. RESULTS Of 4371 studies screened, 108 were included. Numerous studies implicated a negative prognostic role of variant 3, likely mediated through the acquisition of on-target resistance mutations and TP53 mutations which are associated with greater chromosomal instability and mutational burden. Co-occurring variant 3 and TP53 mutations were associated with even worse survival. Other mediators of early resistance development include aberrations in cell cycle regulators and mutations in cell signaling pathways. Comprehensive genomic analysis from first-line TKI clinical trial data was unable to identify a singular genomic signature that underlies the poor prognostic phenotype but implicated a combination of pathways. CONCLUSIONS This scoping review highlights that the poor prognostic ALK phenotype is likely composed of a heterogeneous variety of genomic factors. There remains an unmet need for a genomic assay to integrate these various molecular markers to predict this ALK phenotype.
Collapse
Affiliation(s)
- Sze Wah Samuel Chan
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada; Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Joy Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Jack Young
- Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Samir H Barghout
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Faisal Al-Agha
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Stavroula Raptis
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - M Catherine Brown
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Rosalyn Juergens
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada; Department of Medical Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Kevin Jao
- Division of Medical Oncology and Hematology, Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Parikh K, Dimou A, Leventakos K, Mansfield AS, Shanshal M, Wan Y, Lin HM, Vincent S, Elliott J, Bonta IR. Impact of EML4-ALK Variants and Co-Occurring TP53 Mutations on Duration of First-Line ALK Tyrosine Kinase Inhibitor Treatment and Overall Survival in ALK Fusion-Positive NSCLC: Real-World Outcomes From the GuardantINFORM database. J Thorac Oncol 2024; 19:1539-1549. [PMID: 39019326 DOI: 10.1016/j.jtho.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
INTRODUCTION Tyrosine kinase inhibitors (TKIs) are first-line treatment options for ALK-positive (ALK+) NSCLC. Factors such as variant allele frequencies (VAFs), EML4-ALK fusion variant, and concurrent TP53 mutations (TP53mt) in circulating tumor DNA (ctDNA) may affect treatment outcomes. We evaluated their effects on time to discontinuation (TTD) of first-line treatment with next-generation ALK TKIs in a real-world setting. METHODS Adults with advanced or metastatic NSCLC and ctDNA-detected ALK fusion who received first-line next-generation ALK TKI monotherapy were identified in GuardantINFORM. Effects of ALK fusion VAF, EML4-ALK variants, and TP53mt detection on TTD were evaluated. RESULTS A total of 307 patients with ALK fusion in baseline ctDNA received first-line alectinib (n = 280), brigatinib (n = 15), lorlatinib (n = 9), or ceritinib (n = 3); 150 patients (49%) had ALK-fusion VAF greater than or equal to 1%. Among 232 patients with EML4-ALK fusions (v1, 50%; v3, 36%), TP53mt co-occurred with v1 in 42 (18%) and v3 in 32 (14%). Patients with VAF less than 1% versus greater than or equal to 1% had a median TTD of 32.2 (95% confidence interval [CI]: 20.7-not estimable [NE]) versus 14.7 months (10.4-19.9; hazard ratio [HR] = 1.57 [95% CI: 1.09-2.26]; p = 0.0146). Median TTD was 13.1 (9.5-19.9) versus 27.6 months (17.3-NE) in patients with versus without TP53mt detected (HR = 1.53 [1.07-2.19]; p = 0.0202) and 20.3 (14.4-NE) versus 11.5 months (7.4-31.1) in patients with v1 versus v3 (HR = 1.29 [0.83-2.01]; p = 0.2641). Patients with TP53mt and v3 had a median TTD of 7.4 months (95% CI: 4.2-31.1). CONCLUSION High ctDNA VAF, EML4-ALK v3, and TP53mt were associated with early discontinuation of first-line ALK TKIs.
Collapse
Affiliation(s)
- Kaushal Parikh
- Department of Oncology, Mayo Clinic, Rochester, Minnesota.
| | | | | | | | | | - Yin Wan
- Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Huamao M Lin
- Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | - Sylvie Vincent
- Takeda Development Center Americas, Inc., Lexington, Massachusetts
| | | | | |
Collapse
|
7
|
Chen L, Chen WD, Xu YX, Ren YY, Zheng C, Lin YY, Zhou JL. Strategies for enhancing non-small cell lung cancer treatment: Integrating Chinese herbal medicines with epidermal growth factor receptor-tyrosine kinase inhibitors therapy. Eur J Pharmacol 2024; 980:176871. [PMID: 39117263 DOI: 10.1016/j.ejphar.2024.176871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/20/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Non-small cell lung cancer (NSCLC) poses a global health threat, and epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) such as gefitinib, afatinib, and osimertinib have achieved significant success in clinical treatment. However, the emergence of resistance limits the long-term efficacy of these treatments, necessitating urgent exploration of novel EGFR-TKIs. This review provides an in-depth summary and exploration of the resistance mechanisms associated with EGFR-TKIs, with a specific focus on representative drugs like gefitinib, afatinib, and osimertinib. Additionally, the review introduces a therapeutic strategy involving the combination of Chinese herbal medicines (CHMs) and chemotherapy drugs, highlighting the potential role of CHMs in overcoming NSCLC resistance. Through systematic analysis, we elucidate the primary resistance mechanisms of EGFR-TKIs in NSCLC treatment, emphasizing CHMs as potential treatment medicines and providing a fresh perspective for the development of next-generation EGFR-TKIs. This comprehensive review aims to guide the application of CHMs in combination therapy for NSCLC management, fostering the development of more effective and comprehensive treatment modalities to ultimately enhance patient outcomes.
Collapse
Affiliation(s)
- Lin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Wen-Da Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yu-Xin Xu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ying-Ying Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cheng Zheng
- Zhejiang Institute for Food and Drug Control, NMPA Key Laboratory for Quality Evaluation of Traditional Chinese Medicine, Hangzhou, 310052, China.
| | - Yuan-Yuan Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jian-Liang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
8
|
Nakazawa M, Harada G, Ghanem P, Bubie A, Kiedrowski LA, Murray JC, Marrone KA, Scott SC, Houseknecht S, Falcon CJ, Evans P, Feliciano J, Hann CL, Ettinger DS, Smith KN, Anagnostou V, Forde PM, Brahmer JR, Levy B, Drilon A, Lam VK. Impact of Tumor-intrinsic Molecular Features on Survival and Acquired Tyrosine Kinase Inhibitor Resistance in ALK-positive NSCLC. CANCER RESEARCH COMMUNICATIONS 2024; 4:786-795. [PMID: 38407352 PMCID: PMC10939006 DOI: 10.1158/2767-9764.crc-24-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
While tyrosine kinase inhibitors (TKI) have shown remarkable efficacy in anaplastic lymphoma kinase (ALK) fusion-positive advanced non-small cell lung cancer (NSCLC), clinical outcomes vary and acquired resistance remains a significant challenge. We conducted a retrospective study of patients with ALK-positive NSCLC who had clinico-genomic data independently collected from two academic institutions (n = 309). This was paired with a large-scale genomic cohort of patients with ALK-positive NSCLC who underwent liquid biopsies (n = 1,118). Somatic co-mutations in TP53 and loss-of-function alterations in CDKN2A/B were most commonly identified (24.1% and 22.5%, respectively in the clinical cohort), each of which was independently associated with inferior overall survival (HR: 2.58; 95% confidence interval, CI: 1.62-4.09 and HR: 1.93; 95% CI: 1.17-3.17, respectively). Tumors harboring EML4-ALK variant 3 (v3) were not associated with specific co-alterations but were more likely to develop ALK resistance mutations, particularly G1202R and I1171N (OR: 4.11; P < 0.001 and OR: 2.94; P = 0.026, respectively), and had inferior progression-free survival on first-line TKI (HR: 1.52; 95% CI: 1.03-2.25). Non-v3 tumors were associated with L1196M resistance mutation (OR: 4.63; P < 0.001). EML4-ALK v3 and somatic co-alterations in TP53 and CDKN2A/B are associated with inferior clinical outcomes. v3 status is also associated with specific patterns of clinically important ALK resistance mutations. These tumor-intrinsic features may inform rational selection and optimization of first-line and consolidative therapy. SIGNIFICANCE In a large-scale, contemporary cohort of patients with advanced ALK-positive NSCLC, we evaluated molecular characteristics and their impact on acquired resistance mutations and clinical outcomes. Our findings that certain ALK variants and co-mutations are associated with differential survival and specific TKI-relevant resistance patterns highlight potential molecular underpinnings of the heterogenous response to ALK TKIs and nominate biomarkers that may inform patient selection for first-line and consolidative therapies.
Collapse
Affiliation(s)
- Mari Nakazawa
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guilherme Harada
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical Center, New York, New York
| | - Paola Ghanem
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | - Joseph C. Murray
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kristen A. Marrone
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan C. Scott
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefanie Houseknecht
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christina J. Falcon
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical Center, New York, New York
| | - Patrick Evans
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical Center, New York, New York
| | - Josephine Feliciano
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine L. Hann
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David S. Ettinger
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kellie N. Smith
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Valsamo Anagnostou
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick M. Forde
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julie R. Brahmer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Benjamin Levy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Vincent K. Lam
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Zhang F, Wang Y, He Y, Dong B. Correlation of FBXO45 Expression Levels with Cancer Severity by ZEB1 Ubiquitin in Non-Small-Cell Lung Cancer. J Environ Pathol Toxicol Oncol 2024; 43:13-23. [PMID: 39016138 DOI: 10.1615/jenvironpatholtoxicoloncol.2024053018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
The early diagnostic methods for non-small-cell lung cancer (NSCLC) are limited, lacking effective biomarkers, and the late stage surgery is difficult and has a high recurrence rate. We investigated whether the effects of FBXO45 in arcinogenesis and metastasis of NSCLC. The up-regulation of FBXO45 expression in NSCLC patients or cell lines were observed. FBXO45 gene promoted metastasis and Warburg effect, and reduced ferroptosis of NSCLC. FBXO45 induced ZEB1 expression to promote Warburg effect and reduced ferroptosis of NSCLC. Sh-FBXO45 reduced cancer growth of NSCLC in mice model. FBXO45 decreased the ubiquitination of ZEB1, leading to increased expression of ZEB1, which in turn promoted the Warburg effect and reduced ferroptosis in NSCLC. In vivo imaging, Sh-FBXO45 also reduced ZEB1 expression levels of lung tissue in mice model. FBXO45 in NSCLC through activating the Warburg effect, and the inhibition of ferroptosis of NSCLC by the suppression of ZEB1 ubiquitin, FBXO45 may be a potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Fenjuan Zhang
- Department of Pathology, Xianyang Central Hospital, Xianyang City, 712000 Shaanxi Province, China
| | - Yawei Wang
- Department of Pathology, Qianxian People's Hospital, Qianxian 713300, China
| | - Yan He
- Department of Pathology, Jingyang Country Hospital, Jingyang 713700, China
| | | |
Collapse
|