1
|
Shahrajabian MH, Sun W. The Golden Spice for Life: Turmeric with the Pharmacological Benefits of Curcuminoids Components, Including Curcumin, Bisdemethoxycurcumin, and Demethoxycurcumins. Curr Org Synth 2024; 21:665-683. [PMID: 37287298 DOI: 10.2174/1570179420666230607124949] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Turmeric (Curcuma longa L.), belonging to the Zingiberaceae family, is a perennial rhizomatous plant of tropical and subtropical regions. The three major chemical components responsible for the biological activities of turmeric are curcumin, demethoxycurcumin, and bisdemethoxycurcumin. METHODS The literature search included review articles, analytical studies, randomized control experiments, and observations, which have been gathered from various sources, such as Scopus, Google Scholar, PubMed, and ScienceDirect. A review of the literature was carried out using the keywords: turmeric, traditional Chinese medicine, traditional Iranian medicine, traditional Indian medicine, curcumin, curcuminoids, pharmaceutical benefits, turmerone, demethoxycurcumin, and bisdemethoxycurcumin. The main components of the rhizome of the leaf are α-turmerone, β-turmerone, and arturmerone. RESULTS The notable health benefits of turmeric are antioxidant activity, gastrointestinal effects, anticancer effects, cardiovascular and antidiabetic effects, antimicrobial activity, photoprotector activity, hepatoprotective and renoprotective effects, and appropriate for the treatment of Alzheimer's disease and inflammatory and edematic disorders. DISCUSSION Curcuminoids are phenolic compounds usually used as pigment spices with many health benefits, such as antiviral, antitumour, anti-HIV, anti-inflammatory, antiparasitic, anticancer, and antifungal effects. Curcumin, bisdemethoxycurcumin, and demethoxycurcumin are the major active and stable bioactive constituents of curcuminoids. Curcumin, which is a hydroponic polyphenol, and the main coloring agent in the rhizomes of turmeric, has anti-inflammatory, antioxidant, anti-cancer, and anticarcinogenic activities, as well as beneficial effects for infectious diseases and Alzheimer's disease. Bisdemethoxycurcumin possesses antioxidant, anti-cancer, and anti-metastasis activities. Demethoxycurcumin, which is another major component, has anti-inflammatory, antiproliferative, and anti-cancer activities and is the appropriate candidate for the treatment of Alzheimer's disease. CONCLUSION The goal of this review is to highlight the health benefits of turmeric in both traditional and modern pharmaceutical sciences by considering the important roles of curcuminoids and other major chemical constituents of turmeric.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
2
|
Ecofriendly and low-cost bio adsorbent for efficient removal of methylene blue from aqueous solution. Sci Rep 2022; 12:20580. [PMID: 36446817 PMCID: PMC9707192 DOI: 10.1038/s41598-022-22936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
A novel bio adsorbent was fabricated from turmeric, polyvinyl alcohol and carboxymethyl cellulose for MB dye removal. The physicochemical, antibacterial and biodegradable nature of the film was evaluated using scanning electron microscopy, optical microscopy, universal testing machine, water contact angle, thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction, agar disc diffusion method and soil degradability. The inclusion of turmeric into PVA/CMC film improves the biodegradability, antibacterial activity and thermomechanical property of the films. PVA/CMC/TUR film displayed good MB adsorption capacity (qe: 6.27 mg/g) and maximum dye adsorption (R%; 83%) and was achieved at initial dye concentration of 10 mg/L with contact time 170 min at room temperature. The adsorption data of MB on PVA/CMC/TUR film was evaluated using four models Langmuir, Freundlich, Temkin and D-R isotherms. The different kinetic of adsorption (pseudo-first order, pseudo-second order and intraparticle diffusion model) was also applied for adsorption of MB on the films. The experimental result suggests that PVA/CMC/TUR films are an alternate cheap adsorbent for water treatment.
Collapse
|
3
|
Study on the mechanism and performance of polymer gels by
TE
and
PVA
chemical cross‐linking. J Appl Polym Sci 2022. [DOI: 10.1002/app.52043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
4
|
Luqman M, Shaikh H, Anis A, Al-Zahrani SM, Hamidi A, Inamuddin. Platinum-coated silicotungstic acid-sulfonated polyvinyl alcohol-polyaniline based hybrid ionic polymer metal composite membrane for bending actuation applications. Sci Rep 2022; 12:4467. [PMID: 35296742 PMCID: PMC8927104 DOI: 10.1038/s41598-022-08402-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
An electro-stimulus-responsive bending actuator was developed by synthesizing a non-perfluorinated membrane based on silicotungstic acid (SA), sulfonated polyvinyl alcohol (SPVA), and polyaniline (PANI). The membrane was developed via solution casting method. The dry membrane SA/SPVA showed a sufficient ion-exchange potential of 1.6 meq g-1 dry film. The absorption capacity of the membrane after almost 6 h of immersion was found to be ca. 245% at 45 °C. The electroless plating with Pt metal was carried out on both sides of the membrane that delivered an excellent proton conductivity of 1.9 × 10-3 S cm-1. Moreover, the scanning electron microscopy (SEM) was conducted to reflect the smooth and consistent surface that can prevent water loss. The water loss capacity of the membrane was found to be ca. 33% at 6 V for 16 min. These results suggest a good actuation output of the ionic polymer metal composite (IPMC) membrane once the electrical potential is applied. The electromechanical characterization displayed a maximum tip displacement of 32 mm at 3 V. A microgripping device based on multifigure IPMC membrane may be developed showing a good potential in micro-robotics.
Collapse
Grants
- 13-ADV1432-02 National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia
- 13-ADV1432-02 National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia
- 13-ADV1432-02 National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia
- 13-ADV1432-02 National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia
- 13-ADV1432-02 National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia
Collapse
Affiliation(s)
- Mohammad Luqman
- Department of Chemical Engineering, College of Engineering, Taibah University, Yanbu, Saudi Arabia.
| | - Hamid Shaikh
- SABIC Polymer Research Centre, Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Arfat Anis
- SABIC Polymer Research Centre, Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Saeed M Al-Zahrani
- SABIC Polymer Research Centre, Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Abdullah Hamidi
- SABIC Polymer Research Centre, Department of Chemical Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | - Inamuddin
- Department of Applied Chemistry, Zakir Husain College of Engineering and Technology, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
5
|
Ahmed IA, Badawi M, Bonilla-Petriciolet A, Lima EC, Seliem MK, Mobarak M. Insights Into the Mn(VII) and Cr(VI) Adsorption Mechanisms on Purified Diatomite/MCM-41 Composite: Experimental Study and Statistical Physics Analysis. Front Chem 2022; 9:814431. [PMID: 35211459 PMCID: PMC8861454 DOI: 10.3389/fchem.2021.814431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, a purified diatomite (PD) with a concentration of diatom frustules more than 92% SiO2 was utilized to synthesize a composite of MCM-41 silica under hydrothermal conditions. The as-synthesized PD/MCM-41 composite was characterized and tested as an adsorbent for the removal of Cr(VI) and Mn(VII) ions from aqueous solution. Results of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR) revealed that the diatom frustules of the PD were coated with MCM-41 mesoporous silica. Experimental isotherms of Cr(VI) and Mn(VII) adsorption were fitted to classical and advanced statistical physics models at 25°C–55°C and pH 3. The Langmuir model estimated monolayer adsorption capacities ranging from 144.1 to 162.2 mg/g for Cr(VI) and 166.2 to 177.0 mg/g for Mn(VII), which improved with increasing the solution temperature. Steric and energetic parameters obtained from a monolayer adsorption model with one adsorption site was utilized to explain the adsorption mechanism at a microscopic level. The number of Cr(VI) and Mn(VII) ions adsorbed on PD/MCM-41 active site (n) were 1.25–1.27 for Cr(VI) and 1.27–1.32 for Mn(VII), thus suggesting multi-interaction mechanisms. The density of PD/MCM-41 active sites (DM) was a key parameter to explain the adsorption of these heavy metals. The adsorbed quantities were maximum at 55°C, thus obtaining 102.8 and 110.7 mg/g for Cr(VI) and Mn(VII), respectively. Cr(VI) and Mn(VII) adsorption energies ranged from 18.48 to 26.70 kJ/mol and corresponded to an endothermic adsorption with physical forces. Entropy, free enthalpy, and internal energy associated to the adsorption of Cr(VI) and Mn(VII) ions were calculated, thus indicating that the removal of these pollutants was spontaneous. Overall, this article offers new interpretations for the Cr(VI) and Mn(VII) adsorption mechanisms on PD/MCM-41 composite, which are relevant to contribute to the development of effective water treatment processes.
Collapse
Affiliation(s)
- Inas A. Ahmed
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques, UMR 7019—CNRS, Université de Lorraine, Nancy, France
- *Correspondence: Michael Badawi, ; Moaaz K. Seliem,
| | | | - Eder C. Lima
- Postgraduate Program in Mine, Metallurgical and Materials Engineering (PPGE3M), School of Engineering, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Moaaz K. Seliem
- Faculty of Earth Science, Beni-Suef University, Beni-Suef, Egypt
- *Correspondence: Michael Badawi, ; Moaaz K. Seliem,
| | - Mohamed Mobarak
- Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
6
|
Alhajjar RK, Ghannam RB, Chen See JR, Wright OG, Campa MF, Hazen TC, Lamendella R, Techtmann SM. Comparative study of the effects of biocides and metal oxide nanoparticles on microbial community structure in a stream impacted by hydraulic fracturing. CHEMOSPHERE 2021; 284:131255. [PMID: 34214929 DOI: 10.1016/j.chemosphere.2021.131255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Our study goal was to investigate the impact of biocides and nanoparticles (NPs) on the microbial diversity in a hydraulic fracturing impacted stream. Biocides and NPs are known for their antimicrobial properties and controlling microbial growth. Previous work has shown that biocides can alter the microbial community composition of stream water and may select for biocide-resistant bacteria. Additional studies have shown that nanoparticles can also alter microbial community composition. However, previous work has often focused on the response to a single compound. Here we provide a more thorough analysis of the microbial community response to three different biocides and three different nanoparticles. A microcosm-based study was undertaken that exposed stream microbial communities to either biocides or NPs. Our results showed a decrease in bacterial abundance with different types of nanoparticles, but an increase in microbial abundance in biocide-amended treatments. The microbial community composition (MCC) was distinct from the controls in all biocide and NP treatments, which resulted in differentially enriched taxa in the treatments compared to the controls. Our results indicate that NPs slightly altered the MCC compared to the biocide-treated microcosms. After 14 days, the MCC in the nanoparticle-treated conditions was similar to the MCC in the control. Conversely, the MCC in the biocide-treated microcosms was distinct from the controls at day 14 and distinct from all conditions at day 0. This finding may point to the use of NPs as an alternative to biocides in some settings.
Collapse
Affiliation(s)
- Rehab K Alhajjar
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Ryan B Ghannam
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | | | | | - Maria Fernanda Campa
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, USA
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Knoxville, TN, USA
| | | | - Stephen M Techtmann
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
7
|
Hamdan N, Yamin A, Hamid SA, Khodir WKWA, Guarino V. Functionalized Antimicrobial Nanofibers: Design Criteria and Recent Advances. J Funct Biomater 2021; 12:59. [PMID: 34842715 PMCID: PMC8628998 DOI: 10.3390/jfb12040059] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
The rise of antibiotic resistance has become a major threat to human health and it is spreading globally. It can cause common infectious diseases to be difficult to treat and leads to higher medical costs and increased mortality. Hence, multifunctional polymeric nanofibers with distinctive structures and unique physiochemical properties have emerged as a neo-tool to target biofilm and overcome deadly bacterial infections. This review emphasizes electrospun nanofibers' design criteria and properties that can be utilized to enhance their therapeutic activity for antimicrobial therapy. Also, we present recent progress in designing the surface functionalization of antimicrobial nanofibers with non-antibiotic agents for effective antibacterial therapy. Lastly, we discuss the future trends and remaining challenges for polymeric nanofibers.
Collapse
Affiliation(s)
- Nazirah Hamdan
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
| | - Alisa Yamin
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
| | - Shafida Abd Hamid
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Wan Khartini Wan Abdul Khodir
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia; (N.H.); (A.Y.); (S.A.H.)
- SYNTOF, Kulliyyah of Science, International Islamic University Malaysia Kuantan Campus, Bandar Indera Mahkota, Kuantan 25200, Malaysia
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Mostra d’Oltremare Pad.20, V.le J.F.Kennedy 54, 80125 Naples, Italy
| |
Collapse
|
8
|
Keskin B, Zeytuncu-Gökoğlu B, Koyuncu I. Polymer inclusion membrane applications for transport of metal ions: A critical review. CHEMOSPHERE 2021; 279:130604. [PMID: 33895673 DOI: 10.1016/j.chemosphere.2021.130604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 05/26/2023]
Abstract
The co-existence of heavy metals in industrial effluents is a prevalent problem. Heavy metals are not biodegradable and can remain in the environment when left untreated. Therefore, metals must be removed from wastewater to protect people's health and the environment. Also, these pollutants usually have dissimilar compositions and properties. Generally, metal treatment is performed using traditional methods, but new processes have been developed due to the disadvantages of traditional methods. Especially in the last 20 years, studies on polymer inclusion membranes have been carried out and the transport performance of metal ions has been investigated. It is a more convenient process than both ion exchange and liquid-liquid extraction methods due to the potential and performance of polymer inclusion membranes. When the studies in the literature are examined, it is seen that the performance of polymer inclusion membranes is higher than expected and also when the production conditions are examined, polymer inclusion membrane is more advantageous than other processes. This review is a summary of the studies on the removal and transport of metal by using polymer inclusion membranes in the literature over the last 20 years.
Collapse
Affiliation(s)
- Başak Keskin
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bihter Zeytuncu-Gökoğlu
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- Istanbul Technical University, Environmental Engineering Department, Maslak, 34469, Istanbul, Turkey; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
9
|
Nechanická M, Dolinová I, Špánek R, Tomešová D, Dvořák L. Application of nanofiber carriers for sampling of microbial biomass from contaminated groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146518. [PMID: 34030297 DOI: 10.1016/j.scitotenv.2021.146518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Sampling of microbial biomass is crucial for understanding and controlling remediation processes ongoing at contaminated sites in general, particularly when molecular genetic analyses are employed. In this study, fiber-based carriers with a nanofiber layer were developed and tested as a method to sample microbial biomass in groundwater for molecular genetic analysis. Nanofiber carriers, varying in the shape and the linear density of nanofibers, were examined throughout a 27-month monitoring period in groundwater contaminated with benzene, toluene, ethylbenzene and xylene isomers (BTEX), and chlorinated ethenes. The effect of carrier shape and nanofiber layer density on the microbial surface colonization and composition of the microbial biofilm was determined using real-time PCR and next-generation sequencing (NGS) analysis. Differences in microbial community composition between nanofiber carriers, groundwater, and soil samples were also analyzed to assess the applicability of carriers for biomass sampling at contaminated sites. The nanofiber carriers showed their applicability as a sampling tool, particularly because of their easy manipulation that facilitates DNA isolation. The majority of taxa (Proteobacteria, Firmicutes, and Bacteroidetes) present on the carrier surfaces were also detected in the groundwater. Moreover, the microbial community on all nanofiber carriers reflected the changes in the chemical composition of groundwater. Although the carrier characteristics (shape, nanofiber layer) did not substantially influence the microbial community on the carrier surface, the circular and planar carriers with a nanofiber layer displayed faster microbial surface colonization. However, the circular carrier was the most suitable for biomass sampling in groundwater because of its high contact area and because it does not require pre-treatment prior to DNA extraction.
Collapse
Affiliation(s)
- Magda Nechanická
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Iva Dolinová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic; Department of Biochemistry, Liberec Regional Hospital, Husova 357/10, 460 01 Liberec, Czech Republic
| | - Roman Špánek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Denisa Tomešová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic
| | - Lukáš Dvořák
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec, Czech Republic.
| |
Collapse
|
10
|
Tu YJ, Wang SL, Lu YR, Chan TS, Johnston CT. New insight in adsorption of Sb(III)/Sb(V) from waters using magnetic nanoferrites: X-ray absorption spectroscopy investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
11
|
Filimon A, Olaru N, Doroftei F, Coroaba A, Dunca S. Processing of quaternized polysulfones solutions as tool in design of electrospun nanofibers: Microstructural characteristics and antimicrobial activity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Hydrated titanium dioxide modified with potassium cobalt hexacyanoferrate(II) for sorption of cationic and anionic complexes of uranium(VI). APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01721-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
13
|
β-Cyclodextrin functionalized coaxially electrospun poly(vinylidene fluoride) @ polystyrene membranes with higher mechanical performance for efficient removal of phenolphthalein. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Perveen R, Inamuddin, Ul Haque S, Nasar A, Asiri AM, Md Ashraf G. Electrocatalytic Performance of Chemically Synthesized PIn-Au-SGO Composite toward Mediated Biofuel Cell Anode. Sci Rep 2017; 7:13353. [PMID: 29042654 PMCID: PMC5645452 DOI: 10.1038/s41598-017-13539-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/22/2017] [Indexed: 11/24/2022] Open
Abstract
The proposed work intended to make an intellectual contribution to the domain of green nanotechnology which emphasizes the chemical synthesis of a conducting nanocomposite based on the incorporation of gold nanoparticles (Au) into the redox matrix of polyindole (PIn) along with the subsequent improvement in the overall properties of the composite by the addition of sulfonated graphene oxide (SGO). The bioanode was developed by the deposition of the PIn-Au-SGO nanocomposite with subsequent immobilization of ferritin (Frt) and glucose oxidase (GOx) on the glassy carbon electrode (GC). The successful application of the PIn-Au-SGO nanocomposite toward the development of a ferritin-mediated glucose biofuel cell anode was studied by the electrochemical characterization of the constructed bioanode (GC-PIn-Au-SGO/Frt/GOx) for the bioelectrocatalytic oxidation of glucose. The maximum current density obtained by the modified bioanode was found to be 17.8 mA cm−2 at the limiting glucose concentration of 50 mM in 0.1 M K4Fe(CN)6 at a scan rate of 100 mVs−1. The lifetime of the concerned bioelectrode when stored at 4 °C was estimated to be 53 days approximately. The appreciable results of the structural and electrochemical characterization of the PIn-Au-SGO based bioelectrode reveal its potential applications exclusively in implantable medical devices.
Collapse
Affiliation(s)
- Ruma Perveen
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India
| | - Inamuddin
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. .,Centre of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Sufia Ul Haque
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India
| | - Abu Nasar
- Advanced Functional Materials Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, 202002, India
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.,Centre of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
15
|
Thakur M, Sharma G, Ahamad T, Ghfar AA, Pathania D, Naushad M. Efficient photocatalytic degradation of toxic dyes from aqueous environment using gelatin-Zr(IV) phosphate nanocomposite and its antimicrobial activity. Colloids Surf B Biointerfaces 2017. [DOI: 10.1016/j.colsurfb.2017.06.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|