1
|
Cohen BG, Beykal B, Bollas G. Physics-informed genetic programming for discovery of partial differential equations from scarce and noisy data. JOURNAL OF COMPUTATIONAL PHYSICS 2024; 514:113261. [PMID: 39309523 PMCID: PMC11412625 DOI: 10.1016/j.jcp.2024.113261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
A novel framework is proposed that utilizes symbolic regression via genetic programming to identify free-form partial differential equations from scarce and noisy data. The framework successfully identified ground truth models for four synthetic systems (an isothermal plug flow reactor, a continuously stirred tank reactor, a nonisothermal reactor, and viscous flow governed by Burgers' equation) from time-variant data collected at one location. A comparative analysis against the so-called weak Sparse Identification of Nonlinear Dynamics (SINDy) demonstrated the proposed framework's superior ability to identify meaningful partial differential equation (PDE) models when data was scarce. The framework was further tested for robustness to noise and scarcity, showing successful model recovery from as few as eight time series data points collected at a single point in space with 50% noise. These results emphasize the potential of the proposed framework for the discovery of PDE models when data collection is expensive or otherwise difficult.
Collapse
Affiliation(s)
- Benjamin G. Cohen
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, 06269, CT, USA
| | - Burcu Beykal
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, 06269, CT, USA
- Center for Clean Energy Engineering, University of Connecticut, Storrs, 06269, CT, USA
| | - George Bollas
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, 06269, CT, USA
| |
Collapse
|
2
|
Mousavi SP, Nakhaei-Kohani R, Atashrouz S, Hadavimoghaddam F, Abedi A, Hemmati-Sarapardeh A, Mohaddespour A. Modeling of H 2S solubility in ionic liquids: comparison of white-box machine learning, deep learning and ensemble learning approaches. Sci Rep 2023; 13:7946. [PMID: 37193679 DOI: 10.1038/s41598-023-34193-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/25/2023] [Indexed: 05/18/2023] Open
Abstract
In the context of gas processing and carbon sequestration, an adequate understanding of the solubility of acid gases in ionic liquids (ILs) under various thermodynamic circumstances is crucial. A poisonous, combustible, and acidic gas that can cause environmental damage is hydrogen sulfide (H2S). ILs are good choices for appropriate solvents in gas separation procedures. In this work, a variety of machine learning techniques, such as white-box machine learning, deep learning, and ensemble learning, were established to determine the solubility of H2S in ILs. The white-box models are group method of data handling (GMDH) and genetic programming (GP), the deep learning approach is deep belief network (DBN) and extreme gradient boosting (XGBoost) was selected as an ensemble approach. The models were established utilizing an extensive database with 1516 data points on the H2S solubility in 37 ILs throughout an extensive pressure and temperature range. Seven input variables, including temperature (T), pressure (P), two critical variables such as temperature (Tc) and pressure (Pc), acentric factor (ω), boiling temperature (Tb), and molecular weight (Mw), were used in these models; the output was the solubility of H2S. The findings show that the XGBoost model, with statistical parameters such as an average absolute percent relative error (AAPRE) of 1.14%, root mean square error (RMSE) of 0.002, standard deviation (SD) of 0.01, and a determination coefficient (R2) of 0.99, provides more precise calculations for H2S solubility in ILs. The sensitivity assessment demonstrated that temperature and pressure had the highest negative and highest positive affect on the H2S solubility in ILs, respectively. The Taylor diagram, cumulative frequency plot, cross-plot, and error bar all demonstrated the high effectiveness, accuracy, and reality of the XGBoost approach for predicting the H2S solubility in various ILs. The leverage analysis shows that the majority of the data points are experimentally reliable and just a small number of data points are found beyond the application domain of the XGBoost paradigm. Beyond these statistical results, some chemical structure effects were evaluated. First, it was shown that the lengthening of the cation alkyl chain enhances the H2S solubility in ILs. As another chemical structure effect, it was shown that higher fluorine content in anion leads to higher solubility in ILs. These phenomena were confirmed by experimental data and the model results. Connecting solubility data to the chemical structure of ILs, the results of this study can further assist to find appropriate ILs for specialized processes (based on the process conditions) as solvents for H2S.
Collapse
Affiliation(s)
- Seyed-Pezhman Mousavi
- Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Reza Nakhaei-Kohani
- Department of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Saeid Atashrouz
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Fahimeh Hadavimoghaddam
- Key Laboratory of Continental Shale Hydrocarbon Accumulation and Efficient Development, Ministry of Education, Northeast Petroleum University, Daqing, 163318, China
- Ufa State Petroleum Technological University, Ufa, 450064, Russia
| | - Ali Abedi
- College of Engineering and Technology, American University of the Middle East, Egaila, 54200, Kuwait
| | - Abdolhossein Hemmati-Sarapardeh
- Department of Petroleum Engineering, Shahid Bahonar University of Kerman, Kerman, Iran.
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing, China.
| | - Ahmad Mohaddespour
- Department of Chemical Engineering, McGill University, Montreal, QC, H3A 0C5, Canada.
| |
Collapse
|
3
|
Modeling of Brine/CO2/Mineral Wettability Using Gene Expression Programming (GEP): Application to Carbon Geo-Sequestration. MINERALS 2022. [DOI: 10.3390/min12060760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Carbon geo-sequestration (CGS), as a well-known procedure, is employed to reduce/store greenhouse gases. Wettability behavior is one of the important parameters in the geological CO2 sequestration process. Few models have been reported for characterizing the contact angle of the brine/CO2/mineral system at different environmental conditions. In this study, a smart machine learning model, namely Gene Expression Programming (GEP), was implemented to model the wettability behavior in a ternary system of CO2, brine, and mineral under different operating conditions, including salinity, pressure, and temperature. The presented models provided an accurate estimation for the receding, static, and advancing contact angles of brine/CO2 on various minerals, such as calcite, feldspar, mica, and quartz. A total of 630 experimental data points were utilized for establishing the correlations. Both statistical evaluation and graphical analyses were performed to show the reliability and performance of the developed models. The results showed that the implemented GEP model accurately predicted the wettability behavior under various operating conditions and a few data points were detected as probably doubtful. The average absolute percent relative error (AAPRE) of the models proposed for calcite, feldspar, mica, and quartz were obtained as 5.66%, 1.56%, 14.44%, and 13.93%, respectively, which confirm the accurate performance of the GEP algorithm. Finally, the investigation of sensitivity analysis indicated that salinity and pressure had the utmost influence on contact angles of brine/CO2 on a range of different minerals. In addition, the effect of the accurate estimation of wettability on CO2 column height for CO2 sequestration was illustrated. According to the impact of wettability on the residual and structural trapping mechanisms during the geo-sequestration of the carbon process, the outcomes of the GEP model can be beneficial for the precise prediction of the capacity of these mechanisms.
Collapse
|
5
|
Nait Amar M, Ghriga MA, Ben Seghier MEA, Ouaer H. Predicting solubility of nitrous oxide in ionic liquids using machine learning techniques and gene expression programming. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.08.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Nait Amar M, Ghriga MA, Ouaer H. On the evaluation of solubility of hydrogen sulfide in ionic liquids using advanced committee machine intelligent systems. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|