1
|
Gil-Gavilán D, Amaro-Gahete J, Cosano D, Castillo-Rodríguez M, de Miguel G, Esquivel D, Ruiz JR, Romero-Salguero FJ. Visible-Light-Driven Photocatalytic H 2 Production Using Composites of Co-Al Layered Double Hydroxides and Graphene Derivatives. Inorg Chem 2024; 63:10500-10510. [PMID: 38805658 PMCID: PMC11167638 DOI: 10.1021/acs.inorgchem.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
The direct conversion of solar energy into chemical energy represents an enormous challenge for current science. One of the commonly proposed photocatalytic systems is composed of a photosensitizer (PS) and a catalyst, together with a sacrificial electron donor (ED) when only the reduction of protons to H2 is addressed. Layered double hydroxides (LDH) have emerged as effective catalysts. Herein, two Co-Al LDH and their composites with graphene oxide (GO) or graphene quantum dots (GQD) have been prepared by coprecipitation and urea hydrolysis, which determined their structure and so their catalytic performance, giving H2 productions between 1409 and 8643 μmol g-1 using a ruthenium complex as PS and triethanolamine as ED at 450 nm. The influence of different factors, including the integration of both components, on their catalytic behavior, has been studied. The proper arrangement between the particles of both components seems to be the determining factor for achieving a synergistic interaction between LDH and GO or GQD. The novel Co-Al LDH composite with intercalated GQD achieved an outstanding catalytic efficiency (8643 μmol H2 g-1) and exhibited excellent reusability after 3 reaction cycles, thus representing an optimal integration between graphene materials and Co-Al LDH for visible light driven H2 photocatalytic production.
Collapse
Affiliation(s)
- Dolores
G. Gil-Gavilán
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
| | - Juan Amaro-Gahete
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
- UGR-Carbon
− Materiales Polifuncionales Basados en Carbono, Departamento
de Química Inorgánica, Unidad de Excelencia Química
Aplicada a Biomedicina y Medioambiente, Universidad de Granada, 18071 Granada, Spain
| | - Daniel Cosano
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
| | - Miguel Castillo-Rodríguez
- Departamento
de Física Aplicada, Radiología y Medicina Física, Universidad de Córdoba, Campus de Rabanales, 14071 Córdoba, Spain
| | - Gustavo de Miguel
- Departamento
de Química Física y Termodinámica Aplicada, Instituto
Químico para la Energía y el Medioambiente (IQUEMA),
Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
| | - Dolores Esquivel
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
| | - José R. Ruiz
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
| | - Francisco J. Romero-Salguero
- Departamento
de Química Orgánica, Instituto Químico para la
Energía y el Medioambiente (IQUEMA), Facultad de Ciencias, Universidad de Córdoba, Campus de Rabanales, Edificio Marie
Curie, 14071 Córdoba, Spain
| |
Collapse
|
2
|
Darwish AS, Mahmoud SS, Bayaumy FE. Microwave-assisted hydrothermal fabrication of hierarchical-stacked mesoporous decavanadate-intercalated ZnAl nanolayered double hydroxide to exterminate different developmental stages of Trichinella spiralis and Schistosoma mansoniin-vitro. Heliyon 2023; 9:e18110. [PMID: 37483817 PMCID: PMC10362335 DOI: 10.1016/j.heliyon.2023.e18110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
Hierarchically stacked mesoporous zinc-aluminium nanolayered-double-hydroxide intercalated with decavanadate (ZnAl-LDH-V10O28) is constructed using anion-exchange process via microwave-hydrothermal treatment. Physicochemical properties of ZnAl-LDH-V10O28 are characterized in detail. Decavanadate anions are intimately interacted with ZnAl-LDH nanosheets, generating highly ordered architecture of well-dimensioned stacking blocks of brucite-like nanolayers (∼8 nm). Such hierarchy improves surface-porosity and electrical-impedivity of ZnAl-LDH-V10O28 with declining its zeta-potential (ζav = 8.8 mV). In-vitro treatment of various developmental-stages of Trichinella spiralis and Schistosoma mansoni by ZnAl-LDH-V10O28 is recognized using parasitological and morphological (SEM/TEM) analyses. ZnAl-LDH-V10O28 exterminates muscle-larvae and adult-worms of Trichinella spiralis, and juvenile and adult Schistosoma mansoni, yielding near 100% mortality with rates achieving 5%/h within about 17 h of incubation. This parasiticidal behavior results from the symphony of biological activity gathering decavanadate and LDH-nanosheets. Indeed, ZnAl-LDH-V10O28 nanohybrid sample, as a promissory biocide for killing food-borne/waterborne parasites, becomes a futuristic research hotspot for studying its in-vivo bioactivity and impact-effectiveness on parasite molecular biology.
Collapse
Affiliation(s)
- Atef S. Darwish
- Department of Chemistry, Faculty of Science, Ain Shams University, 11566, Cairo, Egypt
| | - Soheir S. Mahmoud
- Schistosome Biological Materials Supply Program, Theodor Bilharz Research Institute, Giza, Egypt
| | - Fatma E.A. Bayaumy
- Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Roy Chowdhury P, Medhi H, Bhattacharyya KG, Mustansar Hussain C. Recent progress in the design and functionalization strategies of transition metal-based layered double hydroxides for enhanced oxygen evolution reaction: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
4
|
Eizi R, Bastami TR, Mahmoudi V, Ayati A, Babaei H. Facile ultrasound-assisted synthesis of CuFe-Layered double hydroxides/g-C3N4 nanocomposite for alizarin red S sono-sorption. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
5
|
Mohamed IMA, Wu XY, Zhu JH, El-Lateef HMA, Mousa HM, Xing F. Microstructure and interface analyses of novel external anode mortar incorporated calcined hydrotalcite nanoparticles towards an enhanced impressed current cathodic protection. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
6
|
Sahoo DP, Das KK, Mansingh S, Sultana S, Parida K. Recent progress in first row transition metal Layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214666] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Zhou LL, Li WX, Zhao HB, Zhao B. Comparative Study of M(Ⅱ)Al (M=Co, Ni) Layered Double Hydroxides for Silicone Foam: Characterization, Flame Retardancy, and Smoke Suppression. Int J Mol Sci 2022; 23:ijms231911049. [PMID: 36232352 PMCID: PMC9570144 DOI: 10.3390/ijms231911049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/19/2022] Open
Abstract
To compare the different actions of the two representative transition metal cations of Co2+ and Ni2+ in layered double hydroxides (LDHs), CoAl-LDH and NiAl-LDH intercalated with CO32− were synthesized, and the chemical structures, microstructures, and surface areas thereof were successfully characterized. Then, the two LDHs were utilized as flame retardants and smoke suppressants for silicone foam (SiF). The densities, flame retardancy, smoke suppression, thermal stabilities, and compressive strengths of the two SiF/LDHs nanocomposites were investigated. The introduction of LDHs slightly decreased the density of SiF due to the catalytic actions of Co and Ni during the foaming process of SiF. With respect to the flame retardancy, the addition of only 1 phr of either CoAl-LDH or NiAl-LDH could effectively improve the limiting oxygen index of SiF from 28.7 to 29.6%. Based on the results of vertical flame testing and a cone calorimeter test, the flame retardancy and fire safety of the SiF were effectively enhanced by the incorporation of LDHs. In addition, owing to the good catalytic action and large specific surface area (NiAl-LDH: 174.57 m2 g−1; CoAl-LDH: 51.47 m2 g−1), NiAl-LDH revealed higher efficiencies of flame retardancy and smoke suppression than those of CoAl-LDH. According to the results of energy-dispersive X-ray spectroscopy, Co and Ni participated in the formation of protective char layers, which inhibited the release of SiO2 into the gas phase. Finally, the influences on the thermal decomposition and compressive strength for SiF resulting from the addition of LDHs are discussed.
Collapse
Affiliation(s)
- Lin-Lin Zhou
- Institute of Functional Textiles and Advanced Materials, Engineering Research Center for Advanced Fire-Safety Materials Development and Applications, College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Wen-Xiong Li
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hai-Bo Zhao
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bin Zhao
- Institute of Functional Textiles and Advanced Materials, Engineering Research Center for Advanced Fire-Safety Materials Development and Applications, College of Textiles & Clothing, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Correspondence:
| |
Collapse
|
8
|
Rong M, Zhong H, Wang S, Ma X, Cao Z. La/Ce doped CoFe layered double hydroxides (LDH) highly enhanced oxygen evolution performance of water splitting. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126896] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Abstract
Of all the available resources given to mankind, the sunlight is perhaps the most abundant renewable energy resource, providing more than enough energy on earth to satisfy all the needs of humanity for several hundred years. Therefore, it is transient and sporadic that poses issues with how the energy can be harvested and processed when the sun does not shine. Scientists assume that electro/photoelectrochemical devices used for water splitting into hydrogen and oxygen may have one solution to solve this hindrance. Water electrolysis-generated hydrogen is an optimal energy carrier to store these forms of energy on scalable levels because the energy density is high, and no air pollution or toxic gas is released into the environment after combustion. However, in order to adopt these devices for readily use, they have to be low-cost for manufacturing and operation. It is thus crucial to develop electrocatalysts for water splitting based on low-cost and land-rich elements. In this review, I will summarize current advances in the synthesis of low-cost earth-abundant electrocatalysts for overall water splitting, with a particular focus on how to be linked with photoelectrocatalytic water splitting devices. The major obstacles that persist in designing these devices. The potential future developments in the production of efficient electrocatalysts for water electrolysis are also described.
Collapse
|