1
|
Cao H, Wang J, Hao Z, Zhao D. Gelatin-based biomaterials and gelatin as an additive for chronic wound repair. Front Pharmacol 2024; 15:1398939. [PMID: 38751781 PMCID: PMC11094280 DOI: 10.3389/fphar.2024.1398939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Disturbing or disrupting the regular healing process of a skin wound may result in its progression to a chronic state. Chronic wounds often lead to increased infection because of their long healing time, malnutrition, and insufficient oxygen flow, subsequently affecting wound progression. Gelatin-the main structure of natural collagen-is widely used in biomedical fields because of its low cost, wide availability, biocompatibility, and degradability. However, gelatin may exhibit diverse tailored physical properties and poor antibacterial activity. Research on gelatin-based biomaterials has identified the challenges of improving gelatin's poor antibacterial properties and low mechanical properties. In chronic wounds, gelatin-based biomaterials can promote wound hemostasis, enhance peri-wound antibacterial and anti-inflammatory properties, and promote vascular and epithelial cell regeneration. In this article, we first introduce the natural process of wound healing. Second, we present the role of gelatin-based biomaterials and gelatin as an additive in wound healing. Finally, we present the future implications of gelatin-based biomaterials.
Collapse
Affiliation(s)
- Hongwei Cao
- Department of Otorhinolaryngology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingren Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of China Medical University, Shenyang, China
| | - Zhanying Hao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Danyang Zhao
- Department of emergency Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Shao X, Yao G, Chen X, Qiu F, Zhang T. Dopamine modified layered double hydroxide membranes based on nanofibril architectures: Toward superior tellurium separation properties for water treatment. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131297. [PMID: 36989792 DOI: 10.1016/j.jhazmat.2023.131297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Two-dimensional (2D) membrane materials are widely employed for the accurate sieving of ionic contaminants and are of great importance for water reuse. However, 2D membrane materials often suffer from uneven thickness and surface defects, which severely limit their application prospects. Herein, a continuous 2D membrane (LCUM/D) was prepared using cellulose nanofibrils (CNFs) as the support backbone for the assembled layered double hydroxides (LDHs) and dopamine (DA) as the adhesive. The results demonstrated that LDHs could be uniformly distributed in the network structure of CNFs, and the defects on the membrane surface could be effectively compensated by DA. Simultaneously, the continuous LCUM/D showed excellent rejection (97.18%) and selectivity of ionic contaminants tellurium. Dopamine not only compensated for the surface defects of the 2D membrane and enhanced the rejection of tellurium, but also caused no significant loss of water permeance. Moreover, the LCUM/D exhibited stability, which facilitated its long-term application. In addition, the improved hydrophilicity allowed LCUM/D satisfactory anti-fouling properties. This study provides new dimensional insights into the fabrication of continuous 2D membranes for the removal of ionic contaminant and enhances their application prospects in wastewater treatment.
Collapse
Affiliation(s)
- Xue Shao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Guanglei Yao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoping Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
3
|
Sun BY, Cheang WH, Chou SC, Chiao JC, Wu PW. Fabrication of Cu Micromembrane as a Flexible Electrode. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3829. [PMID: 36364606 PMCID: PMC9654814 DOI: 10.3390/nano12213829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
A Cu micromembrane is successfully fabricated and validated as a porous flexible electrode. The Cu micromembrane is prepared by functionalizing individual polypropylene (PP) fibers in a polypropylene micromembrane (PPMM) using a mixture of polydopamine (PDA) and polyethyleneimine (PEI). The mixture of PDA and PEI provides adhesive, wetting, and reducing functionalities that facilitate subsequent Ag activation and Cu electroless plating. Scanning electron microscopy reveals conformal deposition of Cu on individual PP fibers. Porometer analysis indicates that the porous nature of PPMM is properly maintained. The Cu micromembrane demonstrates impressive electrical conductivities in both the X direction (1.04 ± 0.21 S/cm) and Z direction (2.99 ± 0.54 × 10-3 S/cm). In addition, its tensile strength and strain are better than those of pristine PPMM. The Cu micromembrane is flexible and mechanically robust enough to sustain 10,000 bending cycles with moderate deterioration. Thermogravimetric analysis shows a thermal stability of 400 °C and an effective Cu loading of 5.36 mg/cm2. Cyclic voltammetric measurements reveal that the Cu micromembrane has an electrochemical surface area of 277.8 cm2 in a 1 cm2 geometric area (a roughness factor of 227.81), a value that is 45 times greater than that of planar Cu foil.
Collapse
Affiliation(s)
- Bo-Yao Sun
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wai-Hong Cheang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shih-Cheng Chou
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jung-Chih Chiao
- Department of Electrical and Computer Engineering, Southern Methodist University, Dallas, TX 75205, USA
| | - Pu-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
4
|
Luo X, Ao F, Huo Q, Liu Y, Wang X, Zhang H, Yang M, Ma Y, Liu X. Skin-inspired injectable adhesive gelatin/HA biocomposite hydrogel for hemostasis and full-thickness dermal wound healing. BIOMATERIALS ADVANCES 2022; 139:212983. [PMID: 35882139 DOI: 10.1016/j.bioadv.2022.212983] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
An insufficient adhesion to wet surfaces and biased functions for therapeutic efficacy are limitations to the application of gelatin and hyaluronic acid. Herein, we developed a simple double-injection approach to prepare a skin-inspired gelatin/HA-based injectable remoistenable adhesive hydrogel (HI/DA-Gel) through a simultaneous crosslinking and bio-compositing strategy of genipin incorporated with dopamine (DA) grafted gelatin and N-hydroxy succinimide (NHS) merged with hyaluronic acid. The integrative crosslinking and bio-compositing strategy led to the formation of a HI/DA-Gel with a highly skin-bionic interconnected internal double network 3D-structure with elevated surface wettability, thermal-stablity, adhesive and mechanical properties as expected. In vitro/in vivo biostudies showed that HI/DA-Gel enhanced collagen deposition, hemostatic effects and upregulated the production of CD31, showing an effective hemostasis and full-thickness dermal wound healing strategy. This work proposes a novel facile double-injection approach for the design of gelatin/ hyaluronic acid multi-functional injectable bio-composite hydrogels for integrated therapeutic effects.
Collapse
Affiliation(s)
- Xiaomin Luo
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China.
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Qianqian Huo
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Ying Liu
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Huijie Zhang
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China
| | - Min Yang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yun Ma
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY, USA
| | - Xinhua Liu
- College of Bioresources Chemical and Materials Engineering, Institute of Biomass & Functional Materials, Shaanxi University of Science &Technology, Xi'an 710021, China.
| |
Collapse
|
5
|
Cao Z, Li R, Xu P, Li N, Zhu H, Li Z. Highly dispersed RuO 2-biomass carbon composite made by immobilization of ruthenium and dissolution of coconut meat with octyl ammonium salicylate ionic liquid for high performance flexible supercapacitor. J Colloid Interface Sci 2022; 606:424-433. [PMID: 34392036 DOI: 10.1016/j.jcis.2021.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 08/01/2021] [Indexed: 12/27/2022]
Abstract
Poor dispersion of metal oxide-biomass carbon composite limits its further improvement in electrochemical properties. The study reports synthesis of highly dispersed RuO2-biomass carbon nanocomposite (HD-RuO2-BC). Octyl ammonium salicylate ionic liquid was combined with Ru3+ ion to form Ru-based ionic liquid. Followed by addition of coconut meat, microwave treatment to form homogeneous solution, thermal reduction in N2 and oxidation in air in sequence. The resulting HD-RuO2-BC shows three-dimensional architecture and high Ru loading of 9.2%. RuO2 nanoparticles of 6.2 nm were uniformly dispersed in biomass carbon sheets. Excellent dispersion and small size of RuO2 nanoparticles achieve to a significant synergy between RuO2 and biomass carbon. HD-RuO2-BC electrode gives high capacitance of 907.7 F g-1 at 1 A g-1. The value is more than that of BC (150.6 F g-1) and RuO2 electrodes (584.7 F g-1), verifying that introduction of RuO2 achieves to an obviously enhanced capacitance. The symmetrical flexible supercapacitor exhibits excellent supercapacitor performances, including high capacitance (403.8 F g-1 at 1.0 A g-1), rate-capacity (223.1 F g-1 at 50 A g-1), cycling stability (98.2% capacity retention after 10,000 cycles at 50 A g-1) and energy density (378.7 Wh Kg-1at power density of 5199.2 W kg-1).
Collapse
Affiliation(s)
- Zhijun Cao
- School of Chemical and Material Engineering and School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Ruiyi Li
- School of Chemical and Material Engineering and School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Pengwu Xu
- School of Chemical and Material Engineering and School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Nana Li
- School of Chemical and Material Engineering and School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Haiyan Zhu
- School of Chemical and Material Engineering and School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
| | - Zaijun Li
- School of Chemical and Material Engineering and School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Chou SC, Sun BY, Fan TL, Chiang YT, Chiao JC, Wu PW. Fabrication of biocompatible and conductive polypropylene micromembrane as a soft and porous electrode. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|