1
|
Duan R, Li Z, Fu Y, Shan Y, Yu Y, He G, He H. Combined Experimental and Density Functional Theory Study on the Mechanism of the Selective Catalytic Reduction of NO with NH 3 over Metal-Free Carbon-Based Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5598-5605. [PMID: 38466913 DOI: 10.1021/acs.est.4c00584] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Metal-free carbon-based catalysts are attracting much attention in the low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR). However, the mechanism of the NH3-SCR reaction on carbon-based catalysts is still controversial, which severely limits the development of carbon-based SCR catalysts. Herein, we successfully reconstructed carbon-based catalysts through oxidation treatment with nitric acid, thereby enhancing their low-temperature activity in NH3-SCR. Combining experimental results and density functional theory (DFT) calculations, we proposed a previously unreported NH3-SCR reaction mechanism over carbon-based catalysts. We demonstrated that C-OH and C-O-C groups not only effectively activate NH3 but also remarkedly promote the decomposition of intermediate NH2NO. This study enhances the understanding of the NH3-SCR mechanism on carbon-based catalysts and paves the way to develop low-temperature metal-free SCR catalysts.
Collapse
Affiliation(s)
- Rucheng Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuocan Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Fu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guangzhi He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
2
|
Yuan J, Wang Z, Liu J, Li J, Chen J. Potential Risk of NH 3 Slip Arisen from Catalytic Inactive Site in Selective Catalytic Reduction of NO x with Metal-Free Carbon Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:606-614. [PMID: 36524894 DOI: 10.1021/acs.est.2c06289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ammonia emissions from industrial processes have rapidly increased in the past years. Recent advances have used carbon-based selective catalytic reduction (SCR) technology combined with a reaction-regeneration process to reduce NOx from sintering flue gas, while NH3 slip is seldom accounted for in this process. This study demonstrates that although the electrophilic carboxyl groups (-COOH) on metal-free carbon catalysts exhibit strong adsorption toward NH3, they do not participate in the SCR reaction. As a result of the competitive adsorption of NH3 in the reaction step, these catalytic inactive carboxyl groups not only prolong the time to the SCR steady state, but also result in the potential risk of NH3 slip. A linear relationship with the equimolar ratio between carboxyl groups and slipped NH3 was established in the regeneration steps. The slip of NH3 could be alleviated by the decomposition of carboxyl groups, and special attention should be paid to the presence of inactive sites with strong NH3 adsorption on industrial-employed carbon catalysts. In addition to advancing the understanding of the NH3-SCR mechanism, this work also provides valuable opportunities for the control of ammonia emissions from industrial processes.
Collapse
Affiliation(s)
- Jin Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| | - Zhen Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| | - Jun Liu
- College of Chemistry, Taiyuan University of Technology, Taiyuan030024, P. R. China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| |
Collapse
|
3
|
Chen L, Ren S, Zhou Y, Li X, Wang M, Chen Z, Yang J. Effects of doping Mn, Cu and Fe oxides on polyhedron CeO2 catalyst during NH3-SCR reaction. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|