1
|
Deng Y, Ma G, Vallega KA, Wang D, Wang M, Wang C, Wang S, Ramalingam SS, Sun SY. Therapeutic efficacy of the novel SHP2 degrader SHP2-D26, alone or in combination, against lung cancer is associated with modulation of p70S6K/S6, Bim and Mcl-1. Cancer Gene Ther 2022; 29:1558-1569. [PMID: 35449204 DOI: 10.1038/s41417-022-00472-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 02/08/2023]
Abstract
SHP2, a protein tyrosine phosphatase, plays a critical role in fully activating oncogenic signaling pathways such as Ras/MAPK downstream of cell surface tyrosine receptors (e.g., EGFR), which are often activated in human cancers, and thus has emerged as an attractive cancer therapeutic target. This study focused on evaluating the therapeutic potential of the novel SHP2 degrader, SHP2-D26 (D26), either alone or in combination, against non-small cell lung cancer (NSCLC) cells. While all tested NSCLC cell lines responded to D26 with IC50s of < 8 μM, a few cell lines (4/14) were much more sensitive than others with IC50s of ≤ 4 μM. There was no clear association between basal levels of SHP2 and cell sensitivities to D26. Moreover, D26 rapidly and potently decreased SHP2 levels in different NSCLC cell lines in a sustained way regardless of cell sensitivities to D26, suggesting that additional factors may impact cell response to D26. We noted that suppression of p70S6K/S6, but not ERK1/2, was associated with cell responses to D26. In the sensitive cell lines, D26 effectively increased Bim levels while decreasing Mcl-1 levels accompanied with the induction of apoptosis. When combined with the third generation EGFR inhibitor, osimertinib (AZD9291), synergistic effects on decreasing the survival of different osimertinib-resistant cell lines were observed with enhanced induction of apoptosis. Although D26 alone exerted moderate inhibition of the growth of NSCLC xenografts, the combination of osimertinib and D26 effectively inhibited the growth of osimertinib-resistant xenografts, suggesting promising efficacy in overcoming acquired resistance to osimertinib.
Collapse
Affiliation(s)
- Yunfu Deng
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Guangzhi Ma
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Karin A Vallega
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Mingliang Wang
- Departments of Medicinal Chemistry, Pharmacology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Changwei Wang
- Departments of Medicinal Chemistry, Pharmacology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Shaomeng Wang
- Departments of Medicinal Chemistry, Pharmacology and Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Suresh S Ramalingam
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA
| | - Shi-Yong Sun
- Department of Hematology and Medical Oncology, Emory University School of Medicine and Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
2
|
Kano H, Ichihara E, Watanabe H, Nishii K, Ando C, Nakasuka T, Ninomiya K, Kato Y, Kubo T, Rai K, Ohashi K, Hotta K, Tabata M, Maeda Y, Kiura K. SHP2 Inhibition Enhances the Effects of Tyrosine Kinase Inhibitors in Preclinical Models of Treatment-naïve ALK-, ROS1-, or EGFR-altered Non-small Cell Lung Cancer. Mol Cancer Ther 2021; 20:1653-1662. [PMID: 34158345 DOI: 10.1158/1535-7163.mct-20-0965] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/26/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
After molecular-targeted therapy, some cancer cells may remain that are resistant to therapies targeting oncogene alterations, such as those in the genes encoding the EGFR and anaplastic lymphoma kinase (ALK) as well as c-ros oncogene 1 (ROS1). The mechanisms underlying this type of resistance are unknown. In this article, we report the potential role of Src homology 2 domain-containing phosphatase 2 (SHP2) in the residual cells of ALK/ROS1/EGFR-altered non-small cell lung cancer (NSCLC). Molecular-targeted therapies failed to inhibit the ERK signaling pathway in the residual cells, whereas the SHP2 inhibitor SHP099 abolished their remaining ERK activity. SHP099 administered in combination with molecular-targeted therapy resulted in marked growth inhibition of cancer cells both in vitro and in vivo Thus, treatment combining an SHP2 inhibitor and a tyrosine kinase inhibitor may be a promising therapeutic strategy for oncogene-driven NSCLC.
Collapse
Affiliation(s)
- Hirohisa Kano
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eiki Ichihara
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan.
| | - Hiromi Watanabe
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuya Nishii
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Chihiro Ando
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Takamasa Nakasuka
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kiichiro Ninomiya
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yuka Kato
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Toshio Kubo
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Kammei Rai
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Kadoaki Ohashi
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| | - Katsuyuki Hotta
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Masahiro Tabata
- Center for Clinical Oncology, Okayama University Hospital, Okayama, Japan
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Katsuyuki Kiura
- Department of Allergy and Respiratory Medicine, Okayama University Hospital, Okayama, Japan
| |
Collapse
|