1
|
Heo Y, Kim WJ, Cho YJ, Jung JW, Kim NS, Choi IY. Advances in cancer genomics and precision oncology. Genes Genomics 2025; 47:399-416. [PMID: 39849190 DOI: 10.1007/s13258-024-01614-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/27/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Next-generation sequencing has revolutionized genome science over the last two decades. Indeed, the wealth of sequence information on our genome has deepened our understanding on cancer. Cancer is a genetic disease caused by genetic or epigenetic alternations that affect the expression of genes that control cell functions, particularly cell growth and division. Utilization of next-generation sequencing in cancer gene panels has enabled the identification of actionable gene alterations in cancer patients to guide personalized precision medicine. OBJECTIVE The aim is to provide information that can identify actionable gene alterations, enabling personalized precision medicine for cancer patients. RESULTS & DISCUSSION Equipped with next-generation sequencing techniques, international collaboration programs on cancer genomics have identified numerous mutations, gene fusions, microsatellite variations, copy number variations, and epigenetics changes that promote the transformation of normal cells into tumors. Cancer classification has traditionally been based on cell type or tissue-of-origin and the morphological characteristics of the cancer. However, interactive genomic analyses have currently reclassified cancers based on systemic molecular-based taxonomy. Although all cancer-causing genes and mechanisms have yet to be completely understood or identified, personalized or precision medicine is now currently possible for some forms of cancer. Unlike the "one-size-fits-all" approach of traditional medicine, precision medicine allows for customized or personalized treatment based on genomic information. CONCLUSION Despite the availability of numerous cancer gene panels, technological innovation in genomics and expansion of knowledge on the cancer genome will allow precision oncology to manage even more types of cancers.
Collapse
Affiliation(s)
- Yonjong Heo
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, Gangwon, Republic of Korea
| | - Woo-Jin Kim
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, Gangwon, Republic of Korea
| | - Yong-Joon Cho
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jae-Won Jung
- Genetic Sciences Group, Thermo Fisher Scientific Solutions Korea Co., Ltd., Seoul, 06349, Republic of Korea
| | - Nam-Soo Kim
- Department of Molecular Bioscience, Kangwon National University, Chuncheon, 24341, Republic of Korea.
- NBIT Co., Ltd., Chuncheon, 24341, Republic of Korea.
| | - Ik-Young Choi
- Department of Smart Farm and Agricultural Industry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
2
|
Hofman P. Liquid and Tissue Biopsies for Lung Cancer: Algorithms and Perspectives. Cancers (Basel) 2024; 16:3340. [PMID: 39409960 PMCID: PMC11482622 DOI: 10.3390/cancers16193340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The targeted therapies and immunotherapies in thoracic oncology, particularly for NS-NSCLC, are associated with an increase in the number of predictive biomarkers to be assessed in routine clinical practice. These treatments are administered thanks to marketing authorization for use in daily practice or are evaluated during clinical trials. Since the molecular targets to be identified are more and more complex and numerous, it is now mandatory to use NGS. NGS can be developed from both tissue and fluid (mainly blood). The blood tests in oncology, so-called "liquid biopsies" (LB), are performed with plasmatic circulating free DNA (cf-DNA) and are complementary to the molecular testing performed with a TB. LB use in lung cancer is associated with international guidelines, but additional algorithms could be set up. However, even if useful for better care of patients, notably with advanced and metastatic NS-NSCLC, until now LB are not often integrated into daily practice, at least in Europe and notably in France. The purpose of this review is to describe the different opportunities and algorithms leading to the identification of the molecular signature of NS-NSCLC, using both tissue and liquid biopsies, and to introduce the principle limitations but also some perspectives in this field.
Collapse
Affiliation(s)
- Paul Hofman
- IHU RespirERA, Côte d’Azur University, 30 Avenue de la Voie Romaine, 06002 Nice Cedex 01, France;
- Laboratoire de Pathologie Clinique et Experimentale, Centre Hospitalier Universitaire de Nice, Hospital-Related Biobank (BB-0033-00025), Côte d’Azur University, 30 Avenue de la Voie Romaine, 06002 Nice Cedex 01, France
- FHU OncoAge, Pasteur Hospital, Côte d’Azur University, 30 Avenue de la Voie Romaine, 06002 Nice Cedex 01, France
| |
Collapse
|
3
|
Melchior L, Hirschmann A, Hofman P, Bontoux C, Concha A, Mrabet-Dahbi S, Vannuffel P, Watkin E, Putzová M, Scarpino S, Cayre A, Martin P, Stoehr R, Hartmann A. Multicenter evaluation of an automated, multiplex, RNA-based molecular assay for detection of ALK, ROS1, RET fusions and MET exon 14 skipping in NSCLC. Virchows Arch 2024; 484:677-686. [PMID: 38492039 PMCID: PMC11062995 DOI: 10.1007/s00428-024-03778-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/31/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
The current study assessed the performance of the fully automated RT-PCR-based Idylla™ GeneFusion Assay, which simultaneously covers the advanced non-small cell lung carcinoma (aNSCLC) actionable ALK, ROS1, RET, and MET exon 14 rearrangements, in a routine clinical setting involving 12 European clinical centers. The Idylla™ GeneFusion Assay detects fusions using fusion-specific as well as expression imbalance detection, the latter enabling detection of uncommon fusions not covered by fusion-specific assays. In total, 326 archival aNSCLC formalin-fixed paraffin-embedded (FFPE) samples were included of which 44% were resected specimen, 46% tissue biopsies, and 9% cytological specimen. With a total of 179 biomarker-positive cases (i.e., 85 ALK, 33 ROS1, 20 RET fusions and 41 MET exon 14 skipping), this is one of the largest fusion-positive datasets ever tested. The results of the Idylla™ GeneFusion Assay were compared with earlier results of routine reference technologies including fluorescence in situ hybridization, immunohistochemistry, reverse-transcription polymerase chain reaction, and next-generation sequencing, establishing a high sensitivity/specificity of 96.1%/99.6% for ALK, 96.7%/99.0% for ROS1, 100%/99.3% for RET fusion, and 92.5%/99.6% for MET exon 14 skipping, and a low failure rate (0.9%). The Idylla™ GeneFusion Assay was found to be a reliable, sensitive, and specific tool for routine detection of ALK, ROS1, RET fusions and MET exon 14 skipping. Given its short turnaround time of about 3 h, it is a time-efficient upfront screening tool in FFPE samples, supporting rapid clinical decision making. Moreover, expression-imbalance-based detection of potentially novel fusions may be easily verified with other routine technologies without delaying treatment initiation.
Collapse
Affiliation(s)
- Linea Melchior
- Department of Pathology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark.
- , Copenhagen, Denmark.
| | - Astrid Hirschmann
- Department of Pathology, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
- Hospital-integrated Biobank (BB-0033-00025), Hôpital Pasteur, Nice, France
- FHU OncoAge, IHU RespirERA, Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
- Hospital-integrated Biobank (BB-0033-00025), Hôpital Pasteur, Nice, France
- FHU OncoAge, IHU RespirERA, Hôpital Pasteur, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Angel Concha
- Complejo Hospitalario de A Coruña, Corunna, Spain
| | | | | | | | | | - Stefania Scarpino
- Department of Clinical and Molecular Medicine, Pathology Unit, St. Andrea University Hospital, University of Rome La Sapienza, Rome, Italy
| | - Anne Cayre
- UF de Pathologie, Centre Jean Perrin, INSERM U1240, Clermont-Ferrand, France
| | - Paloma Martin
- Molecular Pathology Group, Department of Pathology, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana (IDIPHISA), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Robert Stoehr
- Institute of Pathology, University Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen EMN, Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
| |
Collapse
|
4
|
Hofman P, Berezowska S, Kazdal D, Mograbi B, Ilié M, Stenzinger A, Hofman V. Current challenges and practical aspects of molecular pathology for non-small cell lung cancers. Virchows Arch 2024; 484:233-246. [PMID: 37801103 PMCID: PMC10948551 DOI: 10.1007/s00428-023-03651-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
The continuing evolution of treatment options in thoracic oncology requires the pathologist to regularly update diagnostic algorithms for management of tumor samples. It is essential to decide on the best way to use tissue biopsies, cytological samples, as well as liquid biopsies to identify the different mandatory predictive biomarkers of lung cancers in a short turnaround time. However, biological resources and laboratory member workforce are limited and may be not sufficient for the increased complexity of molecular pathological analyses and for complementary translational research development. In this context, the surgical pathologist is the only one who makes the decisions whether or not to send specimens to immunohistochemical and molecular pathology platforms. Moreover, the pathologist can rapidly contact the oncologist to obtain a new tissue biopsy and/or a liquid biopsy if he/she considers that the biological material is not sufficient in quantity or quality for assessment of predictive biomarkers. Inadequate control of algorithms and sampling workflow may lead to false negative, inconclusive, and incomplete findings, resulting in inappropriate choice of therapeutic strategy and potentially poor outcome for patients. International guidelines for lung cancer treatment are based on the results of the expression of different proteins and on genomic alterations. These guidelines have been established taking into consideration the best practices to be set up in clinical and molecular pathology laboratories. This review addresses the current predictive biomarkers and algorithms for use in thoracic oncology molecular pathology as well as the central role of the pathologist, notably in the molecular tumor board and her/his participation in the treatment decision-making. The perspectives in this setting will be discussed.
Collapse
Affiliation(s)
- Paul Hofman
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France.
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France.
| | - Sabina Berezowska
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Daniel Kazdal
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Baharia Mograbi
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France
| | - Marius Ilié
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France
| | - Albrecht Stenzinger
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Centers for Personalized Medicine (ZPM), Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Véronique Hofman
- Côte d'Azur University, FHU OncoAge, IHU RespirERA, Laboratory of Clinical and Experimental Pathology, BB-0033-00025, Louis Pasteur Hospital, 30 avenue de la voie romaine, BP69, 06001, Nice cedex 01, France
- Côte d'Azur University, IRCAN, Inserm, CNRS 7284, U1081, Nice, France
| |
Collapse
|
5
|
Gilson P, Pouget C, Belmonte R, Fadil S, Demange J, Rouyer M, Lacour J, Betz M, Dardare J, Witz A, Merlin JL, Harlé A. Validation of the Idylla GeneFusion assay to detect fusions and MET exon-skipping in non-small cell lung cancers. Sci Rep 2023; 13:12909. [PMID: 37558711 PMCID: PMC10412571 DOI: 10.1038/s41598-023-39749-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023] Open
Abstract
Gene fusions and MET exon skipping drive oncogenesis in 8-9% and 3% of non-small cell lung cancers (NSCLC) respectively. Their detection are essential for the management of patients since they confer sensitivity to specific targeted therapies with significant clinical benefit over conventional chemotherapy. Immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) account for historical reference techniques however molecular-based technologies (RNA-based sequencing and RT-PCR) are emerging as alternative or complementary methods. Here, we evaluated the analytical performance of the fully-automated RT-PCR Idylla GeneFusion assay compared to reference methods using 35 fixed NSCLC samples. Idylla demonstrated overall agreement, sensitivity and specificity of 100% compared to RNASeq. Interestingly, it succeeded in retrieving 10 out of 11 samples with inconclusive results due to insufficient RNA quality for sequencing. Idylla showed an overall agreement, sensitivity and specificity of 90.32%, 91.67% and 89.47% compared to IHC/FISH respectively. Using commercial standards, the limit of detection of the Idylla system for the most frequent fusions and exon skipping ranges between 5 and 10 ng RNA input. These results support that the Idylla assay is a reliable and rapid option for the detection of these alterations, however a particular attention is needed for the interpretation of the expression imbalance.
Collapse
Affiliation(s)
- Pauline Gilson
- Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 6 Avenue de Bourgogne, CS 30519, 54519, Vandœuvre-lès-Nancy Cedex, France.
- Service de Biologie Moléculaire des Tumeurs, Département de Biopathologie, Institut de Cancérologie de Lorraine/CHRU Nancy, Rue du Morvan, 54511, Vandœuvre-lès-Nancy Cedex, France.
| | - Celso Pouget
- Service d'Anatomocytopathologie, Département de Biopathologie, Institut de Cancérologie de Lorraine/CHRU Nancy, Rue du Morvan, 54511, Vandœuvre-lès-Nancy Cedex, France
| | - Richard Belmonte
- Service de Biologie Moléculaire des Tumeurs, Département de Biopathologie, Institut de Cancérologie de Lorraine/CHRU Nancy, Rue du Morvan, 54511, Vandœuvre-lès-Nancy Cedex, France
| | - Smahane Fadil
- Service de Biologie Moléculaire des Tumeurs, Département de Biopathologie, Institut de Cancérologie de Lorraine/CHRU Nancy, Rue du Morvan, 54511, Vandœuvre-lès-Nancy Cedex, France
| | - Jessica Demange
- Service de Biologie Moléculaire des Tumeurs, Département de Biopathologie, Institut de Cancérologie de Lorraine/CHRU Nancy, Rue du Morvan, 54511, Vandœuvre-lès-Nancy Cedex, France
| | - Marie Rouyer
- Service de Biologie Moléculaire des Tumeurs, Département de Biopathologie, Institut de Cancérologie de Lorraine/CHRU Nancy, Rue du Morvan, 54511, Vandœuvre-lès-Nancy Cedex, France
| | - Julien Lacour
- Service d'Anatomocytopathologie, Département de Biopathologie, Institut de Cancérologie de Lorraine/CHRU Nancy, Rue du Morvan, 54511, Vandœuvre-lès-Nancy Cedex, France
| | - Margaux Betz
- Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 6 Avenue de Bourgogne, CS 30519, 54519, Vandœuvre-lès-Nancy Cedex, France
- Service de Biologie Moléculaire des Tumeurs, Département de Biopathologie, Institut de Cancérologie de Lorraine/CHRU Nancy, Rue du Morvan, 54511, Vandœuvre-lès-Nancy Cedex, France
| | - Julie Dardare
- Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 6 Avenue de Bourgogne, CS 30519, 54519, Vandœuvre-lès-Nancy Cedex, France
- Service de Biologie Moléculaire des Tumeurs, Département de Biopathologie, Institut de Cancérologie de Lorraine/CHRU Nancy, Rue du Morvan, 54511, Vandœuvre-lès-Nancy Cedex, France
| | - Andréa Witz
- Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 6 Avenue de Bourgogne, CS 30519, 54519, Vandœuvre-lès-Nancy Cedex, France
- Service de Biologie Moléculaire des Tumeurs, Département de Biopathologie, Institut de Cancérologie de Lorraine/CHRU Nancy, Rue du Morvan, 54511, Vandœuvre-lès-Nancy Cedex, France
| | - Jean-Louis Merlin
- Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 6 Avenue de Bourgogne, CS 30519, 54519, Vandœuvre-lès-Nancy Cedex, France
- Service de Biologie Moléculaire des Tumeurs, Département de Biopathologie, Institut de Cancérologie de Lorraine/CHRU Nancy, Rue du Morvan, 54511, Vandœuvre-lès-Nancy Cedex, France
| | - Alexandre Harlé
- Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN, Université de Lorraine, 6 Avenue de Bourgogne, CS 30519, 54519, Vandœuvre-lès-Nancy Cedex, France
- Service de Biologie Moléculaire des Tumeurs, Département de Biopathologie, Institut de Cancérologie de Lorraine/CHRU Nancy, Rue du Morvan, 54511, Vandœuvre-lès-Nancy Cedex, France
| |
Collapse
|
6
|
Hernandez S, Conde E, Alonso M, Illarramendi A, Bote de Cabo H, Zugazagoitia J, Paz-Ares L, Lopez-Rios F. A narrative review of methods for the identification of ALK fusions in patients with non-small cell lung carcinoma. Transl Lung Cancer Res 2023; 12:1549-1562. [PMID: 37577307 PMCID: PMC10413037 DOI: 10.21037/tlcr-22-855] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/25/2023] [Indexed: 08/15/2023]
Abstract
Background and Objective This narrative review is intended to provide pragmatic knowledge of current methods for the search of anaplastic lymphoma kinase (ALK) fusions in patients with non-small cell lung carcinoma (NSCLC). This information is very timely, because a recent survey has identified that almost 50% of patients with advanced NSCLC were not candidates for targeted therapies because of biomarker testing issues. Methods PubMed was searched from January 1st, 2012 to February 28th, 2023 using the following keywords: "ALK" and "lung", including reviews and our own work. Key Content and Findings Testing rates have not reached 85% among patients' candidates to ALK inhibition. The advantages and disadvantages of the different analytical options [immunohistochemistry (IHC), fluorescence in situ hybridization (FISH), real-time polymerase chain reaction and next-generation sequencing (NGS)] are discussed. The key factor for success in ALK testing is a deep understanding of the concept of "molecular redundancy". This notion has been recommended and endorsed by all the major professional organizations in the field and can be summarized as follows: "laboratories should ensure that test results that are unexpected, discordant, equivocal, or otherwise of low confidence are confirmed or resolved using an alternative method or sample". In-depth knowledge of the different ALK testing methodologies can help clinical and molecular tumor boards implement and maintain sensible algorithms for a rapid and effective detection of predictive biomarkers in patients with NSCLC. Conclusions Multimodality testing has the potential to increase both the testing rate and the accuracy of ALK fusion identification.
Collapse
Affiliation(s)
- Susana Hernandez
- Pathology Department, Hospital Universitario 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Esther Conde
- Pathology Department, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i+12), Ciberonc, Madrid, Spain
| | - Marta Alonso
- Pathology Department, Hospital Universitario 12 de Octubre, Research Institute Hospital 12 de Octubre (i+12), Madrid, Spain
| | | | - Helena Bote de Cabo
- Oncology Department, Hospital Universitario 12 de Octubre, H12O-CNIO Lung Cancer Clinical Research Unit, Research Institute Hospital 12 de Octubre (i+12)/Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Jon Zugazagoitia
- Oncology Department, Hospital Universitario 12 de Octubre, H12O-CNIO Lung Cancer Clinical Research Unit, Research Institute Hospital 12 de Octubre (i+12)/Spanish National Cancer Research Center (CNIO), Ciberonc, Madrid, Spain
| | - Luis Paz-Ares
- Oncology Department, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, H12O-CNIO Lung Cancer Clinical Research Unit, Research Institute Hospital 12 de Octubre (i+12)/Spanish National Cancer Research Center (CNIO), Ciberonc, Madrid, Spain
| | - Fernando Lopez-Rios
- Pathology Department, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid, Research Institute Hospital 12 de Octubre (i+12), Ciberonc, Madrid, Spain
| |
Collapse
|