1
|
Akinboade MW, Egbemhenghe AU, Abdulkareem TO, Ibrahim IA, Omotara BS, Aderemi OE, Egejuru WA, Ajala CF, Meejay Kanu I, Oluwafemi OO, Aderemi CO, Ddamulira C, Afuape AR, Adekola AT, Ojeyemi T, Otuomagie OI. Identification of promising small-molecule inhibitors targeting STK17B for cancer therapeutics: molecular docking and molecular dynamics investigations. J Biomol Struct Dyn 2025; 43:2389-2396. [PMID: 38147404 DOI: 10.1080/07391102.2023.2296605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/02/2023] [Indexed: 12/28/2023]
Abstract
Cancer is a complex disease characterized by the uncontrolled growth of abnormal cells, leading to the formation of tumours. STK17B, a member of the DAPK family, has been implicated in various cancers and is considered a potential therapeutic target. However, no drug in the market has been approved for the treatment of STK17 B-associated cancer disease. This research aimed to identify direct inhibitors of STK17B using computational techniques. Ligand-based virtual screening and molecular docking were performed, resulting in the selection of three lead compounds (CID_135698391, CID_135453100, CID_136599608) with superior binding affinities compared to the reference compound dovitinib. While molecular docking simulation revealed specific interactions between the lead compounds and key amino acid residues at the binding pocket of STK17B, molecular dynamics simulations demonstrated that CID_135453100 and CID_136599608 exhibit stable conformations and comparable flexibility to dovitinib. However, CID_135698391 did not perform well using this metric as it displayed poor stability. Overall, small-molecule compounds CID_135453100 and CID_136599608 showed promising binding interactions and stability, suggesting their potential as direct inhibitors of STK17B. These findings could contribute to the exploration of novel therapeutic options targeting STK17B in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Bamidele Samson Omotara
- Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT, USA
| | - Olajide Enoch Aderemi
- Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT, USA
| | | | | | - Ihunanya Meejay Kanu
- Department of Epidemiology and Biotatistics, Jackson State University, Jackson, MS, USA
| | | | | | | | | | | | - Toluwalase Ojeyemi
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
| | | |
Collapse
|
2
|
Egbemhenghe AU, Aderemi OE, Omotara BS, Akhimien FI, Osabuohien FO, Adedapo HA, Temionu OR, Egejuru WA, Ajala CF, Ihunanya MF, Oluwafemi OO, Onu CFD, Ajibare AC, Ddamulira C, Abalum JO, Afolayan OM. Computational-based drug design of novel small molecules targeting p53-MDMX interaction. J Biomol Struct Dyn 2024; 42:6678-6687. [PMID: 37578044 DOI: 10.1080/07391102.2023.2245483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
The regulation of the p53 tumor suppressor pathway is critically dependent on the activity of Murine Double Minute 2 (MDM2) and Murine Double Minute X (MDMX) proteins. In certain types of cancer cells, excessive amount of MDMX can poly-ubiquitinate p53, which can result in its degradation, leading to a subsequent reduction in the levels of this protein. Therefore, the design of small-molecule inhibitors targeting the MDMX-p53 interaction has emerged as a promising strategy for cancer therapy. In this study, we employed computational techniques including pharmacophore modeling and molecular docking to identify three potential small molecule inhibitors (CID_25094615, CID_137634453, and CID_25094344) of the MDMX-p53 interaction from a PubChem database. Molecular dynamics of 100000 ps were conducted to assess the stability of the MDMX-inhibitor complexes. Our results showed that all three compounds exhibit stable binding with MDMX, with significantly lower root mean square deviation (RMSD) and fluctuation (RMSF) values than the control ligand, indicating superior stability. Additionally, the three compounds exhibit stronger intermolecular hydrogen bond (HBOND) interactions compared to the control, suggesting stronger stability. Overall, our findings highlight the potential of these compounds as lead candidates for the development of novel anticancer agents that target the MDMX-p53 interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Olajide Enoch Aderemi
- Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT, USA
| | - Bamidele Samson Omotara
- Department of Chemistry and Chemical Engineering, University of New Haven, West Haven, CT, USA
| | | | | | | | - Oluwakemi Rita Temionu
- Department of Medical Laboratory Technology, Lagos State College of Health Technology, Lagos, Nigeria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Adelusi TI, Bolaji OQ, Ojo TO, Adegun IP, Adebodun S. Molecular Mechanics with Generalized Born Surface Area (MMGBSA) Calculations and Docking Studies Unravel some Antimalarial Compounds Using Heme O Synthase as Therapeutic Target. ChemistrySelect 2023; 8. [DOI: 10.1002/slct.202303686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2025]
Abstract
AbstractThe enzyme Heme O Synthase (HOS) is essential for producing heme A and heme O, which are critical for defense against reactive oxygen species, drug detoxification, gas synthesis, transport, and electron transport in Plasmodium species. It has become vital to discover inhibitory molecules/compounds/medicines that target the synthesis of heme due to the emergence of drug‐resistant strains of Plasmodium falciparum. Therefore, in this study, we employed molecular mechanics with Generalized Born surface area (MMGBSA) calculations and docking studies to investigate potential antimalarial compounds targeting HOS from antimalarial botanicals. Screening these compounds, we have identified 2 compounds; Meliantrol and Tamarixetin with better binding affinities (−8.4 Kcal/mol and −8.3 Kcal/mol respectively) than the current standard inhibitor(Inabenfide) of HOS (−8.0 Kcal/mol). The MMGBSA calculations provided insight into the thermodynamics of the binding process and helped identify key interactions responsible for the stability of the HOS‐ligand complex. In addition, the 2 compounds were further screened comparatively with the standard HOS inhibitor considering their protein‐ligand interaction profile and ADMET profile and these 2 selected compounds outperformed Inabenfide. Our results predict that these compounds are potential drug candidates with domiciled therapeutic functions against Malaria therefore, open doors for more experimental validations for drug development.
Collapse
Affiliation(s)
- Temitope Isaac Adelusi
- Computational Molecular Biology and Drug Discovery Laboratory Department of Biochemistry P.M.B Ladoke Akintola University of Technology 210214 Ogbomoso Oyo State Nigeria
| | - Olawale Quadri Bolaji
- Computational Molecular Biology and Drug Discovery Laboratory Department of Biochemistry P.M.B Ladoke Akintola University of Technology 210214 Ogbomoso Oyo State Nigeria
| | - Taiwo Ooreoluwa Ojo
- Computational Molecular Biology and Drug Discovery Laboratory Department of Biochemistry P.M.B Ladoke Akintola University of Technology 210214 Ogbomoso Oyo State Nigeria
| | - Iyanu Paul Adegun
- Computational Molecular Biology and Drug Discovery Laboratory Department of Biochemistry P.M.B Ladoke Akintola University of Technology 210214 Ogbomoso Oyo State Nigeria
| | - Seun Adebodun
- Computational Molecular Biology and Drug Discovery Laboratory Department of Biochemistry P.M.B Ladoke Akintola University of Technology 210214 Ogbomoso Oyo State Nigeria
| |
Collapse
|