1
|
Huang L, Chen H, Nie J, Zhao Y, Miao J. Advanced dressings based on novel biological targets for diabetic wound healing: A review. Eur J Pharmacol 2025; 987:177201. [PMID: 39667426 DOI: 10.1016/j.ejphar.2024.177201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The diabetic wound is one of the most common complications of diabetes in clinic. The existing diabetic wound dressings all have bottlenecks in decreasing inflammation, stopping peripheral neuropathy, relieving local ischemia and hypoxia in diabetic wounds. These challenges are intricately linked to the roles of various growth factors, as well as matrix metalloproteinases. Thus, a comprehensive understanding of growth factors-particularly their dynamic interactions with the extracellular matrix (ECM) and cellular components-is essential. Cells and proteins that influence the synthesis of growth factors and matrix metalloproteinases emerge as potential therapeutic targets for diabetic wound management. This review discusses the latest advancements in the pathophysiology of diabetic wound healing, highlights novel biological targets, and evaluates new wound dressing strategies designed for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Lantian Huang
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hangbo Chen
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Nie
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yingzheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province, 325035, China.
| | - Jing Miao
- Department of Pharmacy, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, 310052, China; Research Center for Clinical Pharmacy, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Wang Z, Zhao F, Xu C, Zhang Q, Ren H, Huang X, He C, Ma J, Wang Z. Metabolic reprogramming in skin wound healing. BURNS & TRAUMA 2024; 12:tkad047. [PMID: 38179472 PMCID: PMC10762507 DOI: 10.1093/burnst/tkad047] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 01/06/2024]
Abstract
Metabolic reprogramming refers to the ability of a cell to alter its metabolism in response to different stimuli and forms of pressure. It helps cells resist external stress and provides them with new functions. Skin wound healing involves the metabolic reprogramming of nutrients, such as glucose, lipids, and amino acids, which play vital roles in the proliferation, differentiation, and migration of multiple cell types. During the glucose metabolic process in wounds, glucose transporters and key enzymes cause elevated metabolite levels. Glucose-mediated oxidative stress drives the proinflammatory response and promotes wound healing. Reprogramming lipid metabolism increases the number of fibroblasts and decreases the number of macrophages. It enhances local neovascularization and improves fibrin stability to promote extracellular matrix remodelling, accelerates wound healing, and reduces scar formation. Reprogramming amino acid metabolism affects wound re-epithelialization, collagen deposition, and angiogenesis. However, comprehensive reviews on the role of metabolic reprogramming in skin wound healing are lacking. Therefore, we have systematically reviewed the metabolic reprogramming of glucose, lipids, and amino acids during skin wound healing. Notably, we identified their targets with potential therapeutic value and elucidated their mechanisms of action.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, Shenyang Key Laboratory of Stem Cell and Regenerative Medicine, China Medical University, No. 77 Puhe Road, Shenyang, 110013, China
| | - Chengcheng Xu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Qiqi Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Haiyue Ren
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Xing Huang
- Department of General Surgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Cai He
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Jiajie Ma
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, No. 36 Sanhao Street, Shenyang, 110004, China
| |
Collapse
|
3
|
Salimabad F, Fathi AN, Babaei S. Effect of hydroalcoholic extract of Trigonella foenum-graecum leaves on wound healing in type 1 diabetic rats. J Wound Care 2023; 32:S24-S35. [PMID: 37907366 DOI: 10.12968/jowc.2023.32.sup11.s24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Diabetes describes a group of metabolic disorders characterised by increased blood glucose concentration. People living with diabetes have a higher risk of morbidity and mortality than the general population. In 2015 it was estimated that there were 415 million (uncertainty interval: 340-536 million) people with diabetes aged 20-79 years, and 5.0 million deaths attributable to diabetes. When diabetic patients develop an ulcer, they become at high risk for major complications, including infection and amputation. The pathophysiologic relationship between diabetes and impaired healing is complex. Vascular, neuropathic, immune function, and biochemical abnormalities each contribute to the altered tissue repair. The use of herbal medicine has increased and attracted the attention of many researchers all over the world. In this study, we have evaluated the effect of 500mg/kg hydroalcoholic extract of Trigonella foenum-graecum leaves (TFG-E) on wound healing in diabetic rats using a full-thickness cutaneous incisional wound model. Wounds of treated animals showed better tensiometric indices, accelerated wound contraction, faster re-epithelialisation, improved neovascularisation, better modulation of fibroblasts and macrophage presence in the wound bed and moderate collagen formation.
Collapse
Affiliation(s)
- Fatemeh Salimabad
- Department of Anatomical Sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Amene Nikgoftar Fathi
- Department of Anatomical Sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Saeid Babaei
- Department of Anatomical Sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
4
|
Burger B, Sagiorato RN, Silva JR, Candreva T, Pacheco MR, White D, Castelucci BG, Pral LP, Fisk HL, Rabelo ILA, Elias-Oliveira J, Osório WR, Consonni SR, Farias ADS, Vinolo MAR, Lameu C, Carlos D, Fielding BA, Whyte MB, Martinez FO, Calder PC, Rodrigues HG. Eicosapentaenoic acid-rich oil supplementation activates PPAR-γ and delays skin wound healing in type 1 diabetic mice. Front Immunol 2023; 14:1141731. [PMID: 37359536 PMCID: PMC10289002 DOI: 10.3389/fimmu.2023.1141731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Delayed wound healing is a devastating complication of diabetes and supplementation with fish oil, a source of anti-inflammatory omega-3 (ω-3) fatty acids including eicosapentaenoic acid (EPA), seems an appealing treatment strategy. However, some studies have shown that ω-3 fatty acids may have a deleterious effect on skin repair and the effects of oral administration of EPA on wound healing in diabetes are unclear. We used streptozotocin-induced diabetes as a mouse model to investigate the effects of oral administration of an EPA-rich oil on wound closure and quality of new tissue formed. Gas chromatography analysis of serum and skin showed that EPA-rich oil increased the incorporation of ω-3 and decreased ω-6 fatty acids, resulting in reduction of the ω-6/ω-3 ratio. On the tenth day after wounding, EPA increased production of IL-10 by neutrophils in the wound, reduced collagen deposition, and ultimately delayed wound closure and impaired quality of the healed tissue. This effect was PPAR-γ-dependent. EPA and IL-10 reduced collagen production by fibroblasts in vitro. In vivo, topical PPAR-γ-blockade reversed the deleterious effects of EPA on wound closure and on collagen organization in diabetic mice. We also observed a reduction in IL-10 production by neutrophils in diabetic mice treated topically with the PPAR-γ blocker. These results show that oral supplementation with EPA-rich oil impairs skin wound healing in diabetes, acting on inflammatory and non-inflammatory cells.
Collapse
Affiliation(s)
- Beatriz Burger
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Roberta Nicolli Sagiorato
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Jéssica Rondoni Silva
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Thamiris Candreva
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Mariana R. Pacheco
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Daniel White
- Department of General Surgery, The Royal Surrey National Health Service (NHS) Foundation Trust Hospital, Guildford, United Kingdom
| | - Bianca G. Castelucci
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Laís P. Pral
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Helena L. Fisk
- School of Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Izadora L. A. Rabelo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jefferson Elias-Oliveira
- Departments of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Wislei Riuper Osório
- Laboratory of Manufacturing Advanced Materials, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Silvio Roberto Consonni
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Alessandro dos Santos Farias
- Autoimmune Research Lab, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Aurélio Ramirez Vinolo
- Laboratory of Immunoinflammation, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Claudiana Lameu
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Daniela Carlos
- Departments of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Barbara A. Fielding
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Martin Brunel Whyte
- Department of Medicine, King’s College Hospital National Health Service (NHS) Foundation Trust, London, United Kingdom
- Department of Clinical & Experimental Medicine, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Fernando O. Martinez
- Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Philip C. Calder
- School of Human Development & Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health Service (NHS) Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Hosana Gomes Rodrigues
- Laboratory of Nutrients and Tissue Repair, School of Applied Sciences, University of Campinas, Limeira, Brazil
| |
Collapse
|
5
|
Ili P, Sari F. Egg yolk oil accelerates wound healing in streptozotocin induced diabetic rats. Biotech Histochem 2023; 98:94-111. [PMID: 36040350 DOI: 10.1080/10520295.2022.2115554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Impaired diabetic wound healing causes foot ulcers. We investigated egg yolk oil for skin wound healing in streptozotocin (STZ) induced diabetic rats. Rats were allocated into three groups of six. Group 1, nondiabetic control group, was treated topically with 2% fusidic acid ointment. Group 2, STZ diabetic control, was treated topically with 2% fusidic acid ointment. Group 3, STZ diabetic group, was treated topically with egg yolk oil. Three days after STZ injection, two full thickness excisional skin wounds were created on the back of each animal. Wound diameter was measured for 14 days and wound contraction was calculated. Re-epithelization time also was determined. Three rats from each group were sacrificed on experimental day 7 and the remaining rats on day 14. Wound samples were examined using hematoxylin and eosin, periodic acid-Schiff, Masson's trichrome, Taenzer-Unna orcein and toluidine blue staining. Expression of endoglin (CD105), epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) were investigated using immunohistochemistry. Egg yolk oil increased the proliferation of epithelial cells and angiogenesis, and stimulated collagen deposition in the lesion area. Egg yolk oil increased CD105, EGF and VEGF expression in blood vessels, and EGF and VEGF expression in epidermis of the lesions. The predominant fatty acids in egg yolk oil are oleic, palmitic and linoleic, which likely were responsible for the beneficial effects of egg yolk oil on diabetic wound healing. Egg yolk oil appears to be a promising therapeutic agent for healing of diabetic wounds.
Collapse
Affiliation(s)
- Pinar Ili
- Department of Medical Services and Techniques, Denizli Vocational School of Health Services, Pamukkale University, Denizli, Turkey
| | - Fikret Sari
- Department of Plant and Animal Production, Tavas Vocational School, Pamukkale University, Denizli, Turkey
| |
Collapse
|
6
|
Babaei S, Fathi AN, Babaei S, Babaei S, Baazm M, Sakhaie H. Effect of bromelain on mast cell numbers and degranulation in diabetic rat wound healing. J Wound Care 2022; 31:S4-S11. [PMID: 36004940 DOI: 10.12968/jowc.2022.31.sup8.s4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Many studies have revealed the prominent roles of mast cells in wound healing, including inflammatory reactions, angiogenesis and extracellular matrix reabsorption. In the present study, we aimed to assess the probable therapeutic features of bromelain on wound contraction and mast cell degranulation in wound healing in experimental diabetic animals. METHOD Male rats were grouped as control, vehicle and experiment. Skin wounds were generated in all groups. Treatments were applied with distilled water and with bromelain (BR) intraperitoneally in the vehicle and experimental groups, respectively. Following skin wound generation, animals were euthanised on days 3, 5, 7 and 15. We gathered 16,800 microscopic images to count the mast cells and degranulation level (Image J software). The wound contraction index was assessed both microscopically (Image J software) and macroscopically (time-lapse photography). The meshwork evaluation method was used to assess wound healing. RESULTS Time-lapse photography revealed that the BR significantly (p<0.05) accelerated wound contraction and healing. BR significantly (p<0.05) increased the total number of mast cells in all experimental groups on days 5 and 7. The count of grade III (degranulated) mast cells was reduced significantly (p<0.05) on days 5 and 7 in experimental groups compared to control and vehicle groups. CONCLUSION In this study, the rate of wound healing was accelerated considerably following BR administration. In addition, this agent decreased the count of degranulated mast cells, leading to wound contraction and healing.
Collapse
Affiliation(s)
- Saeid Babaei
- Department of Anatomical sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Amene Nikgoftar Fathi
- Department of Anatomical sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Sepehr Babaei
- Faculty of Veterinary Medicine. Azad University of Karaj, Karaj, Iran
| | - Soroush Babaei
- Faculty of Veterinary Medicine. Azad University of Karaj, Karaj, Iran
| | - Maryam Baazm
- Department of Anatomical sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hassan Sakhaie
- Department of Anatomical sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
7
|
Gundogdu K, Yilmaz Tasci S, Gundogdu G, Terim Kapakin KA, Totik Y, Demirkaya Miloglu F. Evaluation of cytokines in protective effect of docosahexaenoic acid in experimental achilles tendinopathy rat model induced with type-1 collagenase. Connect Tissue Res 2022; 63:393-405. [PMID: 34612118 DOI: 10.1080/03008207.2021.1982915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND We aimed to investigate the effectiveness of docosahexaenoic acid (DHA) as a treatment for Achilles tendinopathy (AT) induced with type-I collagenase in rats and compare it with collagen. METHODS The AT model was induced with type I collagenase, and animals were randomly assigned to groups. Group 1:AT, Group 2: Collagen (7.2 mg/kg/day), Group 3:DHA (300 mg/kg/day), and Group 4:DHA (100 mg/kg/day). Right tendons of Group1 were used as a healthy control (HC). Oral treatments were applied for eight weeks. Serum tumor necrosis factor-alpha(TNF-α), matrix metalloproteinase-13 (MMP-13), and interleukin-1 beta(IL-1β) concentrations were determined by ELISA. Tendon samples were taken for histopathological evaluation and examined immunohistochemically with antibodies specific for Col1A1, TNF-α, MMP-13, IL-1β, and nitric oxide synthase-2(NOS-2). The ultimate tensile force (UTF) yield force(YF) and stiffness were measured by biomechanical assessments. RESULTS UTF,YF and stiffness values were increased in all treatment groups compared to the AT control, a significant increase was found in Group 2 (p < 0.05). There was severe degeneration of tendon cells in the AT control. The tendon cells in samples from Groups 2-3 were less degraded, and this was statistically significant (p < 0.05). TNF-α, MMP-13, IL-1β, and NOS-2 expressions were significantly higher in the AT control compared to the HC. In all treatment groups, their concentrations were lower than in the AT control. Serum TNF-α, MMP-13, and IL-1β levels were lower in all treatment groups (Especially in Group3 (p < 0.001)) compared to Group1. CONCLUSION The efficacy of high-dose DHA as a treatment for AT was investigated from biochemical, histopathological, and biomechanical perspectives. The results showed that DHA could be an alternative treatment compound to collagen.
Collapse
Affiliation(s)
- Koksal Gundogdu
- Department of Orthopedics and Traumatology, Denizli State Hospital, Denizli, Turkey
| | | | - Gulsah Gundogdu
- Department of Physiology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Kubra Asena Terim Kapakin
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum, Turkey
| | - Yasar Totik
- Department of Machine Engineering, Faculty of Engineering, Ataturk University, Erzurum, Turkey
| | - Fatma Demirkaya Miloglu
- Department of Analytical Chemistry, Faculty of Pharmacy, Ataturk University, Erzurum, Turkey
| |
Collapse
|
8
|
Serini S, Calviello G. New Insights on the Effects of Dietary Omega-3 Fatty Acids on Impaired Skin Healing in Diabetes and Chronic Venous Leg Ulcers. Foods 2021; 10:foods10102306. [PMID: 34681353 PMCID: PMC8535038 DOI: 10.3390/foods10102306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
Long-chain Omega-3 polyunsaturated fatty acids (Omega-3 PUFAs) are widely recognized as powerful negative regulators of acute inflammation. However, the precise role exerted by these dietary compounds during the healing process is still largely unknown, and there is increasing interest in understanding their specific effects on the implicated cells/molecular factors. Particular attention is being focused also on their potential clinical application in chronic pathologies characterized by delayed and impaired healing, such as diabetes and vascular diseases in lower limbs. On these bases, we firstly summarized the current knowledge on wound healing (WH) in skin, both in normal conditions and in the setting of these two pathologies, with particular attention to the cellular and molecular mechanisms involved. Then, we critically reviewed the outcomes of recent research papers investigating the activity exerted by Omega-3 PUFAs and their bioactive metabolites in the regulation of WH in patients with diabetes or venous insufficiency and showing chronic recalcitrant ulcers. We especially focused on recent studies investigating the mechanisms through which these compounds may act. Considerations on the optimal dietary doses are also reported, and, finally, possible future perspectives in this area are suggested.
Collapse
|
9
|
Fathi AN, Sakhaie MH, Babaei S, Babaei S, Slimabad F, Babaei S. Use of bromelain in cutaneous wound healing in streptozocin-induced diabetic rats: an experimental model. J Wound Care 2021; 29:488-495. [PMID: 32924815 DOI: 10.12968/jowc.2020.29.9.488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To assess the effect of bromelain on different aspects of the wound healing process in type 1 diabetic rats. METHOD In this study, 112 streptozocin-diabetic (type 1) male Wistar rats were euthanised; 28 each on days three, five, seven and 15, after a wound incision had been made. To estimate changes in a number of different cellular and tissue elements, histological sections were provided from all wound areas and stained with haematoxylin and eosin. Some 1.056mm2 of total wound area from all specimens were evaluated, by assessment of 4200 microscope photos provided from all histological sections, by stereological methods. A biomechanical test of each wound area was performed with an extensometer to evaluate the work-up to maximum force and maximum stress of the healed wound on day 15. RESULTS In the experimental groups, bromleain caused significant wound contraction and reduced granulation tissue formation by day 7 (p=0.003); increased neovasculars (new small vessels that appear in the wound area during wound healing) on days three, five and seven (p=0.001); significantly increased fibroblasts on day five but decreased by day seven (p=0.002); and significantly decreased macrophage numbers and epithelium thickness on all days of study (p=0.005). Wound strength significantly increased in experimental groups by day 15. CONCLUSION Bromelain has a wide range of therapeutic benefits, but in most studies the mode of its action is not properly understood. It has been proved that bromelain has no major side effects, even after prolonged use. According to the results of this study, bromelain can be used as an effective health supplement to promote and accelerate wound healing indices, reduce inflammation and improve biomechanical parameters in diabetic wounds.
Collapse
Affiliation(s)
- Amene Nikgoftar Fathi
- Department of Anatomical Sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Hassan Sakhaie
- Department of Anatomical Sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Sepehr Babaei
- Faculty of Veterinary Medicine, Azad University of Karaj, Karaj, Iran
| | - Soroush Babaei
- Faculty of Veterinary Medicine, Azad University of Karaj, Karaj, Iran
| | - Fateme Slimabad
- Department of Anatomical Sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Saeid Babaei
- Department of Anatomical Sciences, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
10
|
Dong J, Chen L, Zhang Y, Jayaswal N, Mezghani I, Zhang W, Veves A. Mast Cells in Diabetes and Diabetic Wound Healing. Adv Ther 2020; 37:4519-4537. [PMID: 32935286 PMCID: PMC7547971 DOI: 10.1007/s12325-020-01499-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Mast cells (MCs) are granulated, immune cells of the myeloid lineage that are present in connective tissues. Apart from their classical role in allergies, MCs also mediate various inflammatory responses due to the nature of their secretory products. They are involved in important physiological and pathophysiological responses related to inflammation, chronic wounds, and autoimmune diseases. There are also indications that MCs are associated with diabetes and its complications. MCs and MC-derived mediators participate in all wound healing stages and are involved in the pathogenesis of non-healing, chronic diabetic foot ulcers (DFUs). More specifically, recent work has shown increased degranulation of skin MCs in human diabetes and diabetic mice, which is associated with impaired wound healing. Furthermore, MC stabilization, either systemic or local at the skin level, improves wound healing in diabetic mice. Understanding the precise role of MCs in wound progression and healing processes can be of critical importance as it can lead to the development of new targeted therapies for diabetic foot ulceration, one of the most devastating complications of diabetes.
Collapse
Affiliation(s)
- Jie Dong
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Lihong Chen
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Ying Zhang
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Navin Jayaswal
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Ikram Mezghani
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
| | - Weijie Zhang
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
- LanZhou University of Technology, 287 Langongping Road, Qilihe District, Lanzhou, Gansu, China
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and The Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Shao Y, Dang M, Lin Y, Xue F. Evaluation of wound healing activity of plumbagin in diabetic rats. Life Sci 2019; 231:116422. [DOI: 10.1016/j.lfs.2019.04.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|
12
|
Wound Healing Effect of Kaempferol in Diabetic and Nondiabetic Rats. J Surg Res 2019; 233:284-296. [DOI: 10.1016/j.jss.2018.08.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 06/06/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
|
13
|
Meyer N, Zenclussen AC. Mast cells-Good guys with a bad image? Am J Reprod Immunol 2018; 80:e13002. [DOI: 10.1111/aji.13002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Nicole Meyer
- Experimental Obstetrics and Gynecology; Medical Faculty; Otto-von-Guericke University; Magdeburg Germany
| | - Ana Claudia Zenclussen
- Experimental Obstetrics and Gynecology; Medical Faculty; Otto-von-Guericke University; Magdeburg Germany
| |
Collapse
|