1
|
Aluzaite K, Soares MO, Hewitt C, Hope W, Robotham J, Woods B. Antimicrobial Resistance (AMR) Development Map: A Conceptual Map and a Tool to Support Economic Evaluation of AMR Interventions. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2025:10.1007/s40258-025-00969-6. [PMID: 40346427 DOI: 10.1007/s40258-025-00969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/13/2025] [Indexed: 05/11/2025]
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is a complex, inter-sectoral and international problem. Economic evaluation (EE) methods offer systematic, evidence-driven approaches to inform policy decisions about which AMR interventions to fund. EE of AMR interventions is complicated owing to diffuse effects, complex mechanics of the problem and high levels of uncertainty. Current AMR EE literature restricts the analytical scope, potentially resulting in omissions of effects that may limit the utility of EE to inform policy decisions. We aimed to systemise the key evolutionary and ecological processes of AMR to elucidate the paths through which AMR interventions impact population health and healthcare costs to support EE design and to support decision makers in understanding the limitations of EE evidence for decision-making. METHODS A conceptual map and a corresponding tool were developed on the basis of a literature review in consultation with experts across the relevant disciplines of molecular biology, infectious disease modelling, health economics and ecology. RESULTS The AMR development map: (1) distils the key AMR processes and process drivers behind AMR development and maps the available types of AMR interventions to AMR process drivers; (2) proposes a way to conceptualise the spatial scope of analysis through considering the connectivity of the wider ecosystem and (3) outlines the key dimensions that AMR burden and intervention effects could be measured across. An AMR development map tool was developed to support conceptual modelling, with the focus on the choice of scope in the EE of AMR interventions, and an illustrative case study was provided. DISCUSSION This work summarises the key underlying biological principles of AMR development to provide mechanistical grounding for considering the scope of effects of AMR interventions and the appropriate system of analysis to support conceptual modelling in EE of AMR interventions. In addition, this map can facilitate the identification of effects that cannot be considered or quantified, thus enabling transparency about these omissions within decision-making.
Collapse
Affiliation(s)
| | - Marta O Soares
- Centre for Health Economics, University of York, York, UK
| | - Catherine Hewitt
- York Trials Unit, Department of Health Sciences, University of York, York, UK
| | | | | | - Beth Woods
- Centre for Health Economics, University of York, York, UK
| |
Collapse
|
2
|
Imran M, Umer M, Iqbal Raja N, Abasi F, Sardar N, Rahman U, Naqvi SAM, Baloch MYJ, Alrefaei AF. Antibacterial potential of silver-selenium nanocomposites in mitigating fire blight disease in Pyrus communis L. FRONTIERS IN PLANT SCIENCE 2025; 16:1541498. [PMID: 40144757 PMCID: PMC11936962 DOI: 10.3389/fpls.2025.1541498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 02/17/2025] [Indexed: 03/28/2025]
Abstract
Pyrus communis L. is a vital fruit tree known for its nutritional and economic importance. Thus, for humans, it is an essential element for their balanced nutritional diet, as it contains the major dietary fibers, vitamins, and minerals. All of these nutritionally important aspects decrease with the impact of disease fire blight. Erwinia amylovora is a causative agent of fire blight. This infection causes a considerable loss in the production of Pyrus communis L. Annually, approximately 50% of pear fruit in Pakistan is misplaced because of these illnesses. Therefore, we propose nanotechnology remediation to treat pear plants and obtain the desired yield. In this regard, an experiment was designed to treat infected plants with different concentrations of silver-selenium nanocomposites, which was based on a literature review that indicated the antimicrobial activities of silver and selenium nanoparticles. Silver-selenium nanocomposites were prepared using a green synthesis method, and their synthesis was confirmed using characterization techniques. The experiment was performed at a farmhouse in Chakwal district, Punjab, Pakistan. The experimental results showed increased morphological, physiological, and biochemical parameters. In this regard, the best treatment remained at 50 ppm for the Ag-Se nanocomposite, which improved the plant in different aspects. At the same time, they have improved fruit metrics, such as vitamin C, pH, and juice content. Thus, these results show a possible improvement in enhancing the resistance against fire blight by using green-synthesized Ag-Se NCs. Further studies are needed to understand fully the molecular mechanisms and actions of Pyrus communis L. in treating fire blight disease and to establish the optimal treatment plan.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Muhammad Umer
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Naveed Iqbal Raja
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Fozia Abasi
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Nimra Sardar
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | - Ubaidur Rahman
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, Pakistan
| | | | | | | |
Collapse
|
3
|
Pandey AK, Shafiq N, Kakkar AK, Malhotra S, Woods B, Little C, Rhodes T, Tuson H, Riaz Z, Ashfield T, Corley M, Baltas I. Antimicrobial drug pricing. COMMUNICATIONS MEDICINE 2024; 4:198. [PMID: 39394271 PMCID: PMC11470128 DOI: 10.1038/s43856-024-00594-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024] Open
Abstract
Despite the constant development of antimicrobial resistance (AMR), few new antimicrobials are currently becoming available clinically. Alternative approaches, such as different mechanisms to fund their use, are being explored to encourage development of new antimicrobials.
Collapse
Affiliation(s)
- Avaneesh Kumar Pandey
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Nusrat Shafiq
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Ashish Kumar Kakkar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Samir Malhotra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Beth Woods
- Centre for Health Economics, University of York, York, UK.
| | | | | | | | | | - Tom Ashfield
- British Society for Antimicrobial Chemotherapy, London, UK.
| | - Michael Corley
- British Society for Antimicrobial Chemotherapy, London, UK
| | - Ioannis Baltas
- Infection, Immunity & Inflammation Department, University College London Institute of Child Health, London, UK.
- Department of Clinical Microbiology, University College London Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
4
|
Roope LSJ, Morrell L, Buchanan J, Ledda A, Adler AI, Jit M, Walker AS, Pouwels KB, Robotham JV, Wordsworth S. Overcoming challenges in the economic evaluation of interventions to optimise antibiotic use. COMMUNICATIONS MEDICINE 2024; 4:101. [PMID: 38796507 PMCID: PMC11127962 DOI: 10.1038/s43856-024-00516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/02/2024] [Indexed: 05/28/2024] Open
Abstract
Bacteria are becoming increasingly resistant to antibiotics, reducing our ability to treat infections and threatening to undermine modern health care. Optimising antibiotic use is a key element in tackling the problem. Traditional economic evaluation methods do not capture many of the benefits from improved antibiotic use and the potential impact on resistance. Not capturing these benefits is a major obstacle to optimising antibiotic use, as it fails to incentivise the development and use of interventions to optimise the use of antibiotics and preserve their effectiveness (stewardship interventions). Estimates of the benefits of improving antibiotic use involve considerable uncertainty as they depend on the evolution of resistance and associated health outcomes and costs. Here we discuss how economic evaluation methods might be adapted, in the face of such uncertainties. We propose a threshold-based approach that estimates the minimum resistance-related costs that would need to be averted by an intervention to make it cost-effective. If it is probable that without the intervention costs will exceed the threshold then the intervention should be deemed cost-effective.
Collapse
Affiliation(s)
- Laurence S J Roope
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Liz Morrell
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - James Buchanan
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Health Economics and Policy Research Unit, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Alice Ledda
- AMR Modelling and Evaluation, UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Amanda I Adler
- Diabetes Trial Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Oxford, UK
| | - Mark Jit
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - A Sarah Walker
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Koen B Pouwels
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Julie V Robotham
- AMR Modelling and Evaluation, UK Health Security Agency, London, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Sarah Wordsworth
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxford, UK
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Sreelakshmi KP, Madhuri M, Swetha R, Rangarajan V, Roy U. Microbial lipopeptides: their pharmaceutical and biotechnological potential, applications, and way forward. World J Microbiol Biotechnol 2024; 40:135. [PMID: 38489053 DOI: 10.1007/s11274-024-03908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
As lead molecules, cyclic lipopeptides with antibacterial, antifungal, and antiviral properties have garnered a lot of attention in recent years. Because of their potential, cyclic lipopeptides have earned recognition as a significant class of antimicrobial compounds with applications in pharmacology and biotechnology. These lipopeptides, often with biosurfactant properties, are amphiphilic, consisting of a hydrophilic moiety, like a carboxyl group, peptide backbone, or carbohydrates, and a hydrophobic moiety, mostly a fatty acid. Besides, several lipopeptides also have cationic groups that play an important role in biological activities. Antimicrobial lipopeptides can be considered as possible substitutes for antibiotics that are conventional to address the current drug-resistant issues as pharmaceutical industries modify the parent antibiotic molecules to render them more effective against antibiotic-resistant bacteria and fungi, leading to the development of more resistant microbial strains. Bacillus species produce lipopeptides, which are secondary metabolites that are amphiphilic and are typically synthesized by non-ribosomal peptide synthetases (NRPSs). They have been identified as potential biocontrol agents as they exhibit a broad spectrum of antimicrobial activity. A further benefit of lipopeptides is that they can be produced and purified biotechnologically or biochemically in a sustainable manner using readily available, affordable, renewable sources without harming the environment. In this review, we discuss the biochemical and functional characterization of antifungal lipopeptides, as well as their various modes of action, method of production and purification (in brief), and potential applications as novel antibiotic agents.
Collapse
Affiliation(s)
- K P Sreelakshmi
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - M Madhuri
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - R Swetha
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India.
| |
Collapse
|
6
|
Elkady FM, Hashem AH, Salem SS, El-Sayyad GS, Tawab AA, Alkherkhisy MM, Abdulrahman MS. Unveiling biological activities of biosynthesized starch/silver-selenium nanocomposite using Cladosporium cladosporioides CBS 174.62. BMC Microbiol 2024; 24:78. [PMID: 38459502 PMCID: PMC10921769 DOI: 10.1186/s12866-024-03228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Microbial cells capability to tolerate the effect of various antimicrobial classes represent a major worldwide health concern. The flexible and multi-components nanocomposites have enhanced physicochemical characters with several improved properties. Thus, different biological activities of biosynthesized starch/silver-selenium nanocomposite (St/Ag-Se NC) were assessed. METHODOLOGY The St/Ag-Se NC was biosynthesized using Cladosporium cladosporioides CBS 174.62 (C. cladosporioides) strain. The shape and average particle size were investigated using scanning electron microscope (SEM) and high-resolution transmission electron microscope (HR-TEM), respectively. On the other hand, the St/Ag-Se NC effect on two cancer cell lines and red blood cells (RBCs) was evaluated and its hydrogen peroxide (H2O2) scavenging effect was assessed. Moreover, its effects on various microbial species in both planktonic and biofilm growth forms were examined. RESULTS The St/Ag-Se NC was successfully biosynthesized with oval and spherical shape and a mean particle diameter of 67.87 nm as confirmed by the HR-TEM analysis. St/Ag-Se NC showed promising anticancer activity toward human colorectal carcinoma (HCT-116) and human breast cancer (MCF-7) cell lines where IC50 were 21.37 and 19.98 µg/ml, respectively. Similarly, little effect on RBCs was observed with low nanocomposite concentration. As well, the highest nanocomposite H2O2 scavenging activity (42.84%) was recorded at a concentration of 2 mg/ml. Additionally, Staphylococcus epidermidis (S. epidermidis) ATCC 12,228 and Candida albicans (C. albicans) ATCC 10,231 were the highly affected bacterial and fungal strains with minimum inhibitory concentrations (MICs) of 18.75 and 50 µg/ml, respectively. Moreover, the noticeable effect of St/Ag-Se NC on microbial biofilm was concentration dependent. A high biofilm suppression percentage, 87.5% and 68.05%, were recorded with S. epidermidis and Staphylococcus aureus (S. aureus) when exposed to 1 mg/ml and 0.5 mg/ml, respectively. CONCLUSION The biosynthesized St/Ag-Se NC showed excellent antioxidant activity, haemocompatibility, and anti-proliferative effect at low concentrations. Also, it exhibited promising antimicrobial and antibiofilm activities.
Collapse
Affiliation(s)
- Fathy M Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian (ACU), Giza, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Ahmed Abdel Tawab
- Department of Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammad M Alkherkhisy
- Department of Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed S Abdulrahman
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
7
|
Lathe J, Silverwood RJ, Hughes AD, Patalay P. Examining how well economic evaluations capture the value of mental health. Lancet Psychiatry 2024; 11:221-230. [PMID: 38281493 DOI: 10.1016/s2215-0366(23)00436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Health economics evidence informs health-care decision making, but the field has historically paid insufficient attention to mental health. Economic evaluations in health should define an appropriate scope for benefits and costs and how to value them. This Health Policy provides an overview of these processes and considers to what extent they capture the value of mental health. We suggest that although current practices are both transparent and justifiable, they have distinct limitations from the perspective of mental health. Most social value judgements, such as the exclusion of interindividual outcomes and intersectoral costs, diminish the value of improving mental health, and this reduction in value might be disproportionate compared with other types of health. Economic analyses might have disadvantaged interventions that improve mental health compared with physical health, but research is required to test the size of such differential effects and any subsequent effect on decision-making systems such as health technology assessment systems. Collaboration between health economics and the mental health sciences is crucial for achieving mental-physical health parity in evaluative frameworks and, ultimately, improving population mental health.
Collapse
Affiliation(s)
- James Lathe
- MRC Unit for Lifelong Health and Ageing, Department of Population Science and Experimental Medicine, Faculty of Population Health Sciences, University College London, London, UK.
| | - Richard J Silverwood
- Centre for Longitudinal Studies, Social Research Institute, Institute of Education, Faculty of Education and Society, University College London, London, UK
| | - Alun D Hughes
- MRC Unit for Lifelong Health and Ageing, Department of Population Science and Experimental Medicine, Faculty of Population Health Sciences, University College London, London, UK
| | - Praveetha Patalay
- MRC Unit for Lifelong Health and Ageing, Department of Population Science and Experimental Medicine, Faculty of Population Health Sciences, University College London, London, UK; Centre for Longitudinal Studies, Social Research Institute, Institute of Education, Faculty of Education and Society, University College London, London, UK
| |
Collapse
|
8
|
Gordon J, Gheorghe M, Harrison C, Miller R, Dennis J, Steuten L, Goldenberg S, Gandra S, Al-Taie A. Estimating the Treatment and Prophylactic Economic Value of New Antimicrobials in Managing Antibiotic Resistance and Serious Infections for Common Pathogens in the USA: A Population Modelling Study. PHARMACOECONOMICS 2024; 42:329-341. [PMID: 38001394 PMCID: PMC10861689 DOI: 10.1007/s40273-023-01337-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Antimicrobial resistance is a growing public health concern. There is a global need to estimate the population-level value of developing new antimicrobials and to ensure the effective use of existing antimicrobials as strategies to counteract antimicrobial resistance. To this aim, population-level value criteria need to be considered alongside conventional value measures. OBJECTIVE The objective of this study was to develop a novel modelling approach to estimate the value of new antimicrobials, considering the transmission, diversity and enablement elements of STEDI value. METHODS We developed a population-based mathematical model for the assessment of antimicrobial value considering both prophylactic use of antimicrobials and the treatment of selected serious hospital-acquired infections in hospitals in the USA at a population level. Large-scale clinical and population healthcare data were used to inform a modelling-based analysis assessing the impact of introducing a new antimicrobial compared with continuing with no new antimicrobial, accounting for the transmission, diversity and enablement value of antimicrobial agents. RESULTS Over a 10-year period, the addition of a new antimicrobial as part of an antimicrobial stewardship strategy in the USA was estimated to result in a proportional reduction of 9.03% in projected antimicrobial resistance levels. This yielded an estimated reduction of $64.3 million in hospitalization costs and a gain of over 153,000 quality-adjusted life-years at an economic value of over $15.4 billion over 10 years. Considering input uncertainty, the estimate of monetary benefit ranged from $11.1 to $21.4 billion. CONCLUSIONS The use of a new antimicrobial for treatment and prophylactic indications yields considerable clinical and economic benefits including transmission diversity and enablement value. These findings may provide decision makers with important evidence to support investment in new antimicrobials and antimicrobial stewardship policy that address the patient, population and system burden associated with antimicrobial resistance.
Collapse
Affiliation(s)
- Jason Gordon
- Health Economics and Outcomes Research Ltd, Cardiff, UK
| | | | - Cale Harrison
- Health Economics and Outcomes Research Ltd, Cardiff, UK
| | - Ryan Miller
- Health Economics and Outcomes Research Ltd, Cardiff, UK
| | - James Dennis
- Health Economics and Outcomes Research Ltd, Cardiff, UK
| | | | - Simon Goldenberg
- Centre for Clinical Infection & Diagnostics Research, King's College London and Guy's & St. Thomas' NHS, London, UK
| | - Sumanth Gandra
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Amer Al-Taie
- Pfizer R&D UK Ltd, Dorking Road, Tadworth, KT20 7NT, UK.
| |
Collapse
|
9
|
Aly Khalil AM, Saied E, Mekky AE, Saleh AM, Al Zoubi OM, Hashem AH. Green biosynthesis of bimetallic selenium-gold nanoparticles using Pluchea indica leaves and their biological applications. Front Bioeng Biotechnol 2024; 11:1294170. [PMID: 38274007 PMCID: PMC10809157 DOI: 10.3389/fbioe.2023.1294170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Increasing bacterial resistance and the negative impact of currently used antibacterial agents have produced the need for novel antibacterial agents and anticancer drugs. In this regard, nanotechnology could provide safer and more efficient therapeutic agents. The main methods for nanoparticle production are chemical and physical approaches that are often costly and environmentally unsafe. In the current study, Pluchea indica leaf extract was used for the biosynthesis of bimetallic selenium-gold nanoparticles (Se-Au BNPs) for the first time. Phytochemical examinations revealed that P. indica leaf extract includes 90.25 mg/g dry weight (DW) phenolics, 275.53 mg/g DW flavonoids, and 26.45 mg/g DW tannins. X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) techniques were employed to characterize Se-Au BNPs. Based on UV-vis spectra, the absorbance of Se-Au BNPs peaked at 238 and 374 nm. In SEM imaging, Se-Au BNPs emerged as bright particles, and both Au and Se were uniformly distributed throughout the P. indica leaf extract. XRD analysis revealed that the average size of Se-Au BNPs was 45.97 nm. The Se-Au BNPs showed antibacterial properties against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis, with minimum inhibitory concentrations (MICs) of 31.25, 15.62, 31.25, and 3.9 μg/mL, respectively. Surprisingly, a cytotoxicity assay revealed that the IC50 value toward the Wi 38 normal cell line was 116.8 μg/mL, implying that all of the MICs described above could be used safely. More importantly, Se-Au BNPs have shown higher anticancer efficacy against human breast cancer cells (MCF7), with an IC50 value of 13.77 μg/mL. In conclusion, this paper is the first to provide data on the effective utilization of P. indica leaf extract in the biosynthesis of biologically active Se-Au BNPs.
Collapse
Affiliation(s)
| | - Ebrahim Saied
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alsayed E. Mekky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed M. Saleh
- Biology Department, Faculty of Science Yanbu, Taibah University, Medina, Saudi Arabia
| | - Omar Mahmoud Al Zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, Medina, Saudi Arabia
| | - Amr H. Hashem
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Hampson G, Steuten L. Netflix and pill: is there a role for volume-delinked subscription-style payments beyond antimicrobials?'. Expert Rev Pharmacoecon Outcomes Res 2024; 24:1-3. [PMID: 37830872 DOI: 10.1080/14737167.2023.2271171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
|
11
|
Gordon J, Gheorghe M, Goldenberg S, Miller R, Dennis J, Al-Taie A. Capturing Value Attributes in the Economic Evaluation of Ceftazidime with Avibactam for Treating Severe Aerobic Gram-Negative Bacterial Infections in the United Kingdom. PHARMACOECONOMICS 2023; 41:1657-1673. [PMID: 37587392 PMCID: PMC10635959 DOI: 10.1007/s40273-023-01310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/23/2023] [Indexed: 08/18/2023]
Abstract
INTRODUCTION Antimicrobial resistance remains a serious and growing threat to public health, both globally and in the UK, leading to diminishing effectiveness of antimicrobials. Despite a clear need for new antimicrobials, the clinical pipeline is insufficient, driven by high research and development costs and limited expected returns on investment. To counteract this, National Institute for Health and Care Excellence (NICE) and National Health Service (NHS) England have launched a reimbursement mechanism, de-linked from volume of sales, that aims to reduce economic risk by recognising the broader population-level value of antimicrobials. The objective of this study was to quantify the value of ceftazidime-avibactam for treating gram-negative infections in the UK considering some of these broader value elements unique to antimicrobials. METHODS A previously developed dynamic disease transmission and cost-effectiveness model was applied to assess the value of introducing ceftazidime-avibactam to UK treatment practice in the management of gram-negative hospital-acquired infections in line with the licenced indications for ceftazidime-avibactam. Model inputs were parameterised using sources aligned to the UK perspective. RESULTS The introduction of ceftazidime-avibactam into a two-line treatment sequence saved over 2300 lives, leading to a gain of 27,600 life years and 22,000 quality-adjusted life years (QALY) at an additional cost of £17 million, over a ten-year transmission period. Ceftazidime-avibactam was associated with a net monetary benefit of £642 million at willingness to pay threshold of £30,000 per QALY; even at a lower threshold of £20,000 per QALY, the net monetary benefit is £422 million. DISCUSSION Increasing the diversity of antimicrobial treatments through the introduction of an additional antimicrobial, in this instance ceftazidime-avibactam, was associated with substantial clinical and economic benefits, when considering broader population-level value. Despite revealing considerable benefits, the value of ceftazidime-avibactam is only partially reflected in this analysis. Further efforts are required to fully operationalise the spectrum, transmission, enablement, diversity and insurance (STEDI) value framework and accurately reflect the population-level value of antimicrobials.
Collapse
Affiliation(s)
- Jason Gordon
- Health Economics and Outcomes Research Ltd., Unit A, Cardiff Gate Business Park, Copse Walk, Pontprennau, Cardiff, CF23 8RB, UK.
| | | | - Simon Goldenberg
- Centre for Clinical Infection and Diagnostics Research, King's College London and Guy's & St. Thomas' NHS Foundation Trust, London, UK
| | - Ryan Miller
- Health Economics and Outcomes Research Ltd., Unit A, Cardiff Gate Business Park, Copse Walk, Pontprennau, Cardiff, CF23 8RB, UK
| | - James Dennis
- Health Economics and Outcomes Research Ltd., Unit A, Cardiff Gate Business Park, Copse Walk, Pontprennau, Cardiff, CF23 8RB, UK
| | | |
Collapse
|
12
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
13
|
Arivuselvam R, Dera AA, Parween Ali S, Alraey Y, Saif A, Hani U, Arumugam Ramakrishnan S, Azeeze MSTA, Rajeshkumar R, Susil A, Harindranath H, Kumar BRP. Isolation, Identification, and Antibacterial Properties of Prodigiosin, a Bioactive Product Produced by a New Serratia marcescens JSSCPM1 Strain: Exploring the Biosynthetic Gene Clusters of Serratia Species for Biological Applications. Antibiotics (Basel) 2023; 12:1466. [PMID: 37760761 PMCID: PMC10526024 DOI: 10.3390/antibiotics12091466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Prodigiosin pigment has high medicinal value, so exploring this compound is a top priority. This report presents a prodigiosin bioactive compound isolated from Serratia marcescens JSSCPM1, a new strain. The purification process of this compound involves the application of different chromatographic methods, including UV-visible spectroscopy, high-performance liquid chromatography (HPLC), and liquid chromatography-mass spectrometry (LC/MS). Subsequent analysis was performed using nuclear magnetic resonance (NMR) to achieve a deeper understanding of the compound's structure. Finally, through a comprehensive review of the existing literature, the structural composition of the isolated bioactive compound was found to correspond to that of the well-known compound prodigiosin. The isolated prodigiosin compound was screened for antibacterial activity against both Gram-positive and Gram-negative bacteria. The compound inhibited the growth of Gram-negative bacterial strains compared with Gram-positive bacterial strains. It showed a maximum minimum inhibitory concentration against Escherichia coli NCIM 2065 at a 15.9 ± 0.31 μg/mL concentration. The potential binding capabilities between prodigiosin and the OmpF porin proteins (4GCS, 4GCP, and 4GCQ) were determined using in silico studies, which are generally the primary targets of different antibiotics. Comparative molecular docking analysis indicated that prodigiosin exhibits a good binding affinity toward these selected drug targets.
Collapse
Affiliation(s)
- Rajaguru Arivuselvam
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, TN, India; (R.A.); (S.A.R.)
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysore 570015, KA, India
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia; (A.A.D.); (S.P.A.); (Y.A.)
| | - Syed Parween Ali
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia; (A.A.D.); (S.P.A.); (Y.A.)
| | - Yasser Alraey
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia; (A.A.D.); (S.P.A.); (Y.A.)
| | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia;
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha 62529, Saudi Arabia;
| | - Sivaa Arumugam Ramakrishnan
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, TN, India; (R.A.); (S.A.R.)
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysore 570015, KA, India
| | | | - Raman Rajeshkumar
- Department of Pharmaceutical Biotechnology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, TN, India; (R.A.); (S.A.R.)
| | - Aishwarya Susil
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysore 570015, KA, India (H.H.)
| | - Haritha Harindranath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysore 570015, KA, India (H.H.)
| | - B. R. Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagar, Mysore 570015, KA, India (H.H.)
| |
Collapse
|
14
|
Hashem AH, El-Sayyad GS, Al-Askar AA, Marey SA, AbdElgawad H, Abd-Elsalam KA, Saied E. Watermelon Rind Mediated Biosynthesis of Bimetallic Selenium-Silver Nanoparticles: Characterization, Antimicrobial and Anticancer Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3288. [PMID: 37765453 PMCID: PMC10535481 DOI: 10.3390/plants12183288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
One of the most hazardous diseases that influences human health globally is microbial infection. Therefore, bimetallic nanoparticles have received much attention for controlling microbial infections in the current decade. In the present study, bimetallic selenium-silver nanoparticles (Se-Ag NPs) were effectively biosynthesized using watermelon rind WR extract through the green technique for the first time. UV-visible spectroscopy, transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDX) methods were used to characterize the produced NPs. The results indicated that the bimetallic Se-Ag NPs had synergistic antimicrobial activity at low concentrations, which helped to reduce the toxicity of Ag NPs after the bimetallic Se-Ag NPs preparation and increase their great potential. Se-Ag NPs with sizes ranging from 18.3 nm to 49.6 nm were detected by TEM. Se-Ag NP surfaces were uniformly visible in the SEM picture. The cytotoxicity of bimetallic Se-Ag NPs was assessed against the Wi38 normal cell line to check their safety, where the IC50 was 168.42 µg/mL. The results showed that bimetallic Se-Ag NPs had antibacterial action against Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Klebsiella oxytoca, Bacillus subtilis, and Staphylococcus aureus with a minimum inhibitory concentration (MIC) of 12.5 to 50 µg/mL. Additionally, bimetallic Se-Ag NPs had promising anticancer activity toward the MCF7 cancerous cell line, where the IC50 was 21.6 µg/mL. In conclusion, bimetallic Se-Ag NPs were biosynthesized for the first time using WR extract, which had strong antibacterial, antifungal and anticancer properties.
Collapse
Affiliation(s)
- Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Gharieb S. El-Sayyad
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City 12451, Giza, Egypt;
- Microbiology and Immunology Department, Faculty of Pharmacy, Galala University, New Galala City 43511, Suez, Egypt
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Samy A. Marey
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, 2020 Antwerp, Belgium
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| |
Collapse
|
15
|
Gudra D, Silamikelis I, Pjalkovskis J, Danenberga I, Pupola D, Skenders G, Ustinova M, Megnis K, Leja M, Vangravs R, Fridmanis D. Abundance and prevalence of ESBL coding genes in patients undergoing first line eradication therapy for Helicobacter pylori. PLoS One 2023; 18:e0289879. [PMID: 37561723 PMCID: PMC10414638 DOI: 10.1371/journal.pone.0289879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
The spread of extended-spectrum beta-lactamases (ESBLs) in nosocomial and community-acquired enterobacteria is an important challenge for clinicians due to the limited therapeutic options for infections that are caused by these organisms. Here, we developed a panel of ESBL coding genes, evaluated the abundance and prevalence of ESBL encoding genes in patients undergoing H. pylori eradication therapy, and summarized the effects of eradication therapy on functional profiles of the gut microbiome. To assess the repertoire of known beta lactamase (BL) genes, they were divided into clusters according to their evolutionary relation. Primers were designed for amplification of cluster marker regions, and the efficiency of this amplification panel was assessed in 120 fecal samples acquired from 60 patients undergoing H. pylori eradication therapy. In addition, fecal samples from an additional 30 patients were used to validate the detection efficiency of the developed ESBL panel. The presence for majority of targeted clusters was confirmed by NGS of amplification products. Metagenomic sequencing revealed that the abundance of ESBL genes within the pool of microorganisms was very low. The global relative abundances of the ESBL-coding gene clusters did not differ significantly among treatment states. However, at the level of each cluster, classical ESBL producers such as Klebsiella sp. for blaOXY (p = 0.0076), Acinetobacter sp. for blaADC (p = 0.02297) and others, differed significantly with a tendency to decrease compared to the pre- and post-eradication states. Only 13 clusters were common across all three datasets, suggesting a patient-specific distribution profile of ESBL-coding genes. The number of AMR genes detected in the post-eradication state was higher than that in the pre-eradication state, which could be attributed, at least in part, to the therapy. This study demonstrated that the ESBL screening panel was effective in targeting ESBL-coding gene clusters from bacterial DNA and that minor differences exist in the abundance and prevalence of ESBL-coding gene levels before and after eradication therapy.
Collapse
Affiliation(s)
- Dita Gudra
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | | | | | | | - Darta Pupola
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Girts Skenders
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | - Maija Ustinova
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Kaspars Megnis
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
- Faculty of Medicine, University of Latvia, Riga, Latvia
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine, University of Latvia, Riga, Latvia
| | | |
Collapse
|
16
|
Moore LSP, Villegas MV, Wenzler E, Rawson TM, Oladele RO, Doi Y, Apisarnthanarak A. Rapid Diagnostic Test Value and Implementation in Antimicrobial Stewardship Across Low-to-Middle and High-Income Countries: A Mixed-Methods Review. Infect Dis Ther 2023:10.1007/s40121-023-00815-z. [PMID: 37261612 DOI: 10.1007/s40121-023-00815-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/20/2023] [Indexed: 06/02/2023] Open
Abstract
Despite technological advancements in infectious disease rapid diagnostic tests (RDTs) and use to direct therapy at the per-patient level, RDT utilisation in antimicrobial stewardship programmes (ASPs) is variable across low-to-middle income and high-income countries. Key insights from a panel of seven infectious disease experts from Colombia, Japan, Nigeria, Thailand, the UK, and the USA, combined with evidence from a literature review, were used to assess the value of RDTs in ASPs. From this, a value framework is proposed which aims to define the benefits of RDT use in ASPs, separate from per-patient benefits. Expert insights highlight that, to realise the value of RDTs within ASPs, effective implementation is key; actionable advice for choosing an RDT is proposed. Experts advocate the inclusion of RDTs in the World Health Organization Model List of essential in vitro diagnostics and in iterative development of national action plans.
Collapse
Affiliation(s)
- Luke S P Moore
- Clinical Infection Department, Chelsea and Westminster NHS Foundation Trust, 369 Fulham Road, London, SW10 9NH, UK.
- Imperial College Healthcare NHS Trust, North West London Pathology, London, UK.
- NIHR Health Protection Research Unit in Healthcare Associated Infections & Antimicrobial Resistance, Imperial College London, London, UK.
| | - Maria Virginia Villegas
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
- Molecular Genetics and Antimicrobial Resistance Unit, International Center for Microbial Genomics, Universidad El Bosque, Bogotá, Colombia
| | - Eric Wenzler
- College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Timothy M Rawson
- NIHR Health Protection Research Unit in Healthcare Associated Infections & Antimicrobial Resistance, Imperial College London, London, UK
- Centre for Antimicrobial Optimisation, Imperial College London, London, UK
| | - Rita O Oladele
- Department of Medical Microbiology and Parasitology, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Yohei Doi
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Anucha Apisarnthanarak
- Research Group in Infectious Diseases Epidemiology and Prevention, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
17
|
Kållberg C, Mathiesen L, Gopinathan U, Salvesen Blix H. The role of drug regulatory authorities and health technology assessment agencies in shaping incentives for antibiotic R&D: a qualitative study. J Pharm Policy Pract 2023; 16:53. [PMID: 36973761 PMCID: PMC10045501 DOI: 10.1186/s40545-023-00556-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Few antibiotics have entered the market in recent years despite the need for new treatment options. Some of the challenges of bringing new antibiotics to market are linked to the marketing authorization and health technology assessment (HTA) processes. Research shows great variation in geographic availability of new antibiotics, suggesting that market introduction of new antibiotics is unpredictable. We aimed to investigate regulatory authorities' and HTA agencies' role in developing non-financial incentives to stimulate antibiotic research and development (R&D). METHODS We conducted individual, semi-structured, stakeholder interviews. Participants were recruited from regulatory authorities (EMA and FDA) and HTA agencies in Europe. Participants had to be experienced with assessment of antibiotics. The data were analyzed using a deductive and inductive approach to develop codes and identify key themes. Data were analyzed using thematic analysis including the constant comparison method to define concepts, and rival thinking to identify alternative explanations. RESULTS We found that (1) interpretation of key concepts guiding the understanding of what type of antibiotics are needed vary (2) lack of a shared approach on how to deal with limited clinical data in the marketing authorization and HTA processes is causing barriers to getting new antibiotics to market (3) necessary adaptations to the marketing authorization process causes uncertainties that transmit to other key stakeholders involved in delivering antibiotics to patients. CONCLUSIONS A shared understanding of limited clinical data and how to deal with this issue is needed amongst stakeholders involved in antibiotic R&D, marketing authorization, and market introduction to ensure antibiotics reach the market before resistance levels are out of control. Regulatory authorities and HTA agencies could play an active role in aligning the view of what constitutes an unmet medical need, and direct new economic models towards stimulating greater diversity in the antibiotic armamentarium.
Collapse
Affiliation(s)
- Cecilia Kållberg
- Institute of Health and Society, Faculty of Medicine, University of Oslo, Forskningsveien 3A, 0373, Oslo, Norway.
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456, Oslo, Norway.
| | - Liv Mathiesen
- School of Pharmacy, University of Oslo, Sem Sælands Vei 3, 0371, Oslo, Norway
| | - Unni Gopinathan
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456, Oslo, Norway
| | - Hege Salvesen Blix
- Norwegian Institute of Public Health, Lovisenberggata 8, 0456, Oslo, Norway
- School of Pharmacy, University of Oslo, Sem Sælands Vei 3, 0371, Oslo, Norway
| |
Collapse
|
18
|
Schurer M, Patel R, van Keep M, Horgan J, Matthijsse S, Madin-Warburton M. Recent advances in addressing the market failure of new antimicrobials: Learnings from NICE's subscription-style payment model. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1010247. [PMID: 36860906 PMCID: PMC9969890 DOI: 10.3389/fmedt.2023.1010247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/09/2023] [Indexed: 02/15/2023] Open
Abstract
Background Antimicrobial resistance (AMR) is a growing threat to global health. With pathogenic bacteria inevitably becoming more resistant to existing antimicrobials, mortality and costs due to AMR will significantly increase over the next few decades if adequate action is not taken. A major challenge in addressing AMR is the lack of financial incentives for manufacturers to invest in developing new antimicrobials. This is partly because current approaches in health technology assessment (HTA) and standard modeling methods fail to capture the full value of antimicrobials. Aim We explore recent reimbursement and payment frameworks, particularly pull incentives, aimed to address the market failures in antimicrobials. We focus on the "subscription-style" payment model recently used in the UK and discuss the learnings for other European countries. Methods A pragmatic literature review was conducted to identify recent initiatives and frameworks between 2012 and 2021, across seven European markets. The National Institute for Health and Care Excellence (NICE) technology appraisals for cefiderocol and for ceftazidime with avibactam were reviewed to evaluate how the new UK model has been applied in practice and identify the key challenges. Conclusion The UK and Sweden are the first European countries to pilot the feasibility of implementing pull incentives through fully and partially delinked payment models, respectively. The NICE appraisals highlighted the complexity and large areas of uncertainty of modeling antimicrobials. If HTA and value-based pricing are part of the future in tackling the market failure in AMR, European-level efforts may be needed to overcome some of the key challenges.
Collapse
Affiliation(s)
| | - Renu Patel
- Lumanity, HEOR, Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
19
|
Abstract
Antibiotics have transformed modern medicine. They are essential for treating infectious diseases and enable vital therapies and procedures. However, despite this success, their continued use in the 21st century is imperiled by two orthogonal challenges. The first is that the microbes targeted by these drugs evolve resistance to them over time. The second is that antibiotic discovery and development are no longer cost-effective using traditional reimbursement models. Consequently, there are a dwindling number of companies and laboratories dedicated to delivering new antibiotics, resulting in an anemic pipeline that threatens our control of infections. The future of antibiotics requires innovation in a field that has relied on highly traditional methods of discovery and development. This will require substantial changes in policy, quantitative understanding of the societal value of these drugs, and investment in alternatives to traditional antibiotics. These include narrow-spectrum drugs, bacteriophage, monoclonal antibodies, and vaccines, coupled with highly effective diagnostics. Addressing the antibiotic crisis to meet our future needs requires considerable investment in both research and development, along with ensuring a viable marketplace that encourages innovation. This review explores the past, present, and future of antimicrobial therapy.
Collapse
Affiliation(s)
- Michael A Cook
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
| |
Collapse
|
20
|
Roope LS. The economic challenges of new drug development. J Control Release 2022; 345:275-277. [PMID: 35306118 PMCID: PMC8926434 DOI: 10.1016/j.jconrel.2022.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/26/2022]
Abstract
The COVID-19 pandemic has witnessed highly successful efforts to produce effective vaccines and treatments at an unprecedented pace. This perspective discusses factors that made this possible, from long-term investments in research infrastructure to major government interventions that absorbed much of the risk from research and development. We discuss key economic obstacles in the discovery of new drugs for infectious diseases, from novel antibiotics to diseases that primarily affect the poor. The world's collective experience of the pandemic may present an opportunity to reform traditional economic models of drug discovery to better address unmet needs. A tax-funded global institution could provide incentives for drug discovery based on their global health impact. International co-operation would be needed to agree and commit to adequate funding mechanisms, and the necessary political will would require strong public support. With the current heightened appreciation of the need for global health system resilience, there may be no better opportunity than now.
Collapse
|
21
|
Parmanik A, Das S, Kar B, Bose A, Dwivedi GR, Pandey MM. Current Treatment Strategies Against Multidrug-Resistant Bacteria: A Review. Curr Microbiol 2022; 79:388. [PMID: 36329256 PMCID: PMC9633024 DOI: 10.1007/s00284-022-03061-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
There are several bacteria called superbugs that are resistant to multiple antibiotics which can be life threatening specially for critically ill and hospitalized patients. This article provides up-to-date treatment strategies employed against some major superbugs, like methicillin-resistant Staphylococcus aureus, carbapenem-resistant Enterobacteriaceae, vancomycin-resistant Enterococcus, multidrug-resistant Pseudomonas aeruginosa, and multidrug-resistant Escherichia coli. The pathogen-directed therapeutics decrease the toxicity of bacteria by altering their virulence factors by specific processes. On the other hand, the host-directed therapeutics limits these superbugs by modulating immune cells, enhancing host cell functions, and modifying disease pathology. Several new antibiotics against the global priority superbugs are coming to the market or are in the clinical development phase. Medicinal plants possessing potent secondary metabolites can play a key role in the treatment against these superbugs. Nanotechnology has also emerged as a promising option for combatting them. There is urgent need to continuously figure out the best possible treatment strategy against these superbugs as resistance can also be developed against the new and upcoming antibiotics in future. Rational use of antibiotics and maintenance of proper hygiene must be practiced among patients.
Collapse
Affiliation(s)
- Ankita Parmanik
- grid.412612.20000 0004 1760 9349School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Soumyajit Das
- grid.412612.20000 0004 1760 9349School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Biswakanth Kar
- grid.412612.20000 0004 1760 9349School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Anindya Bose
- grid.412612.20000 0004 1760 9349School of Pharmaceutical Sciences, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003 India
| | - Gaurav Raj Dwivedi
- grid.464904.b0000 0004 0506 3705ICMR-Regional Medical Research Centre, Gorakhpur, Uttar Pradesh 273013 India
| | - Murali Monohar Pandey
- grid.418391.60000 0001 1015 3164Birla Institute of Technology and Science (BITS), Pilani, Rajasthan 333031 India
| |
Collapse
|