1
|
Westphalen CB, Martins-Branco D, Beal JR, Cardone C, Coleman N, Schram AM, Halabi S, Michiels S, Yap C, André F, Bibeau F, Curigliano G, Garralda E, Kummar S, Kurzrock R, Limaye S, Loges S, Marabelle A, Marchió C, Mateo J, Rodon J, Spanic T, Pentheroudakis G, Subbiah V. The ESMO Tumour-Agnostic Classifier and Screener (ETAC-S): a tool for assessing tumour-agnostic potential of molecularly guided therapies and for steering drug development. Ann Oncol 2024; 35:936-953. [PMID: 39187421 DOI: 10.1016/j.annonc.2024.07.730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Advances in precision oncology led to approval of tumour-agnostic molecularly guided treatment options (MGTOs). The minimum requirements for claiming tumour-agnostic potential remain elusive. METHODS The European Society for Medical Oncology (ESMO) Precision Medicine Working Group (PMWG) coordinated a project to optimise tumour-agnostic drug development. International experts examined and summarised the publicly available data used for regulatory assessment of the tumour-agnostic indications approved by the US Food and Drug Administration and/or the European Medicines Agency as of December 2023. Different scenarios of minimum objective response rate (ORR), number of tumour types investigated, and number of evaluable patients per tumour type were assessed for developing a screening tool for tumour-agnostic potential. This tool was tested using the tumour-agnostic indications approved during the first half of 2024. A taxonomy for MGTOs and a framework for tumour-agnostic drug development were conceptualised. RESULTS Each tumour-agnostic indication had data establishing objective response in at least one out of five patients (ORR ≥ 20%) in two-thirds (≥4) of the investigated tumour types, with at least five evaluable patients in each tumour type. These minimum requirements were met by tested indications and may serve as a screening tool for tumour-agnostic potential, requiring further validation. We propose a conceptual taxonomy classifying MGTOs based on the therapeutic effect obtained by targeting a driver molecular aberration across tumours and its modulation by tumour-specific biology: tumour-agnostic, tumour-modulated, or tumour-restricted. The presence of biology-informed mechanistic rationale, early regulatory advice, and adequate trial design demonstrating signs of biology-driven tumour-agnostic activity, followed by confirmatory evidence, should be the principles for tumour-agnostic drug development. CONCLUSION The ESMO Tumour-Agnostic Classifier (ETAC) focuses on the interplay of targeted driver molecular aberration and tumour-specific biology modulating the therapeutic effect of MGTOs. We propose minimum requirements to screen for tumour-agnostic potential (ETAC-S) as part of tumour-agnostic drug development. Definition of ETAC cut-offs is warranted.
Collapse
Affiliation(s)
- C B Westphalen
- Comprehensive Cancer Center Munich & Department of Medicine III, University Hospital, LMU Munich, Munich; German Cancer Consortium (DKTK), partner site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - D Martins-Branco
- Scientific and Medical Division, European Society for Medical Oncology (ESMO), Lugano, Switzerland
| | - J R Beal
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| | - C Cardone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Naples, Italy
| | - N Coleman
- School of Medicine, Trinity College Dublin, Dublin; Medical Oncology Department, St. James's Hospital, Dublin; Trinity St. James's Cancer Institute, Dublin, Ireland
| | - A M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City; Weill Cornell Medical College, New York City
| | - S Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham; Duke Cancer Institute, Duke University, Durham, USA
| | - S Michiels
- Oncostat U1018, Inserm, Université Paris-Saclay, labeled Ligue Contre le Cancer, Villejuif; Service de Biostatistique et Epidémiologie, Gustave Roussy, Villejuif, France
| | - C Yap
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, UK
| | - F André
- INSERM U981, Gustave Roussy, Villejuif; Department of Cancer Medicine, Gustave Roussy, Villejuif; Faculty of Medicine, Université Paris-Saclay, Kremlin Bicêtre
| | - F Bibeau
- Service d'Anatomie Pathologique, CHU Besançon, Université de Bourgogne Franche-Comté, Besançon, France
| | - G Curigliano
- Istituto Europeo di Oncologia, IRCCS, Milan; Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - E Garralda
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - S Kummar
- Division of Hematology and Medical Oncology, Department of Medicine, Knight Cancer Institute, Oregon Health and Science University, Portland
| | - R Kurzrock
- Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, USA
| | - S Limaye
- Medical & Precision Oncology, Sir H. N. Reliance Foundation Hospital & Research Centre, Mumbai, India
| | - S Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), German Center for Lung Research (DZL), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - A Marabelle
- Drug Development Department (DITEP) and Laboratory for Translational Research in Immunotherapy (LRTI), Gustave Roussy, INSERM U1015 & CIC1428, Université Paris-Saclay, Villejuif, France
| | - C Marchió
- Department of Medical Sciences, University of Turin, Turin; Division of Pathology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - J Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - J Rodon
- Department of Investigational Cancer Therapeutics, UT MD Anderson, Houston, USA
| | - T Spanic
- Europa Donna Slovenia, Ljubljana, Slovenia
| | - G Pentheroudakis
- Scientific and Medical Division, European Society for Medical Oncology (ESMO), Lugano, Switzerland
| | - V Subbiah
- Early-Phase Drug Development, Sarah Cannon Research Institute (SCRI), Nashville, USA
| |
Collapse
|
2
|
Hogervorst MA, van Hattem CC, Sonke GS, Mantel-Teeuwisse AK, Goettsch WG, Bloem LT. Healthcare decision-making for tumour-agnostic therapies in Europe: lessons learned. Drug Discov Today 2024; 29:104031. [PMID: 38796096 DOI: 10.1016/j.drudis.2024.104031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
The tumour-agnostic authorisations of larotrectinib and entrectinib shifted the paradigm for indication setting. European healthcare decision-makers agreed on their therapeutic potential but diverged primarily in identified uncertainties concerning basket trial designs and endpoints, prognostic value of neurotrophic tropomyosin receptor kinase (NTRK) gene fusions, and resistance mechanisms. In addition, assessments of relevant comparators, unmet medical needs (UMNs), and implementation of NTRK-testing strategies diverged. In particular, the tumour-specific reimbursement recommendations and guidelines do not reflect tumour-agnostic thinking. These differences indicate difficulties experienced in these assessments and provide valuable lessons for future disruptive therapies. As we discuss here, early multistakeholder dialogues concerning minimum evidence requirements and involving clinicians are essential.
Collapse
Affiliation(s)
- Milou A Hogervorst
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Christine C van Hattem
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Medical Oncology, University of Amsterdam, Amsterdam, the Netherlands
| | - Aukje K Mantel-Teeuwisse
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands
| | - Wim G Goettsch
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands; National Health Care Institute (ZIN), Diemen, the Netherlands
| | - Lourens T Bloem
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
3
|
Bhandari NR, Gilligan AM, Myers J, Ale-Ali A, Smolen L. Integrated budget impact model to estimate the impact of introducing selpercatinib as a tumor-agnostic treatment option for patients with RET-altered solid tumors in the US. J Med Econ 2024; 27:348-358. [PMID: 38334069 DOI: 10.1080/13696998.2024.2317120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE To estimate the potential budget impact on US third party payers (commercial or Medicare) associated with addition of selpercatinib as a tumor-agnostic treatment for patients with Rearranged during Transfection (RET)-altered solid tumors. METHODS An integrated budget impact model (iBIM) with 3-year (Y) time horizon was developed for 19 RET-altered tumors. It is referred to as an integrated model because it is a single model that integrated results across multiple tumor types (as opposed to tumor-specific models developed traditionally). The model estimated eligible patient populations and included tumor-specific comparator treatments for each tumor type. Estimated annual total costs (2022USD, $) included costs of drug, administration, supportive care, and toxicity. For a one-million-member plan, the number of patients with RET-altered tumors eligible for treatment, incremental total costs, and incremental per-member per-month (PMPM) costs associated with introduction of selpercatinib treatment were estimated. Uncertainty associated with model parameters was assessed using various sensitivity analyses. RESULTS Commercial perspective estimated 11.68 patients/million with RET-altered tumors as treatment-eligible annually, of which 7.59 (Y1), 8.17 (Y2), and 8.76 (Y3) patients would be selpercatinib-treated (based on forecasted market share). The associated incremental total and PMPM costs (commercial) were estimated to be: $873,099 and $0.073 (Y1), $2,160,525 and $0.180 (Y2), and $2,561,281 and $0.213 (Y3), respectively. The Medicare perspective estimated 55.82 patients/million with RET-altered tumors as treatment-eligible annually, of which 36.29 (Y1), 39.08 (Y2), and 41.87 (Y3) patients would be selpercatinib-treated. The associated incremental total and PMPM costs (Medicare) were estimated to be: $4,447,832 and $0.371 (Y1), $11,076,422 and $0.923 (Y2), and $12,637,458 and $1.053 (Y3), respectively. One-way sensitivity analyses across both perspectives identified drug costs, selpercatinib market share, incidence of RET, and treatment duration as significant drivers of incremental costs. CONCLUSIONS Three-year incremental PMPM cost estimates suggest a modest impact on payer-budgets associated with introduction of tumor-agnostic selpercatinib treatment.
Collapse
Affiliation(s)
| | | | - Julie Myers
- Medical Decision Modeling Inc, Indianapolis, IN, USA
| | | | - Lee Smolen
- Medical Decision Modeling Inc, Indianapolis, IN, USA
| |
Collapse
|
4
|
Weymann D, Pollard S, Lam H, Krebs E, Regier DA. Toward Best Practices for Economic Evaluations of Tumor-Agnostic Therapies: A Review of Current Barriers and Solutions. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2023; 26:1608-1617. [PMID: 37543205 DOI: 10.1016/j.jval.2023.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 08/07/2023]
Abstract
OBJECTIVES Cancer therapies targeting tumor-agnostic biomarkers are challenging traditional health technology assessment (HTA) frameworks. The high prevalence of nonrandomized single-arm trials, heterogeneity, and small benefiting populations are driving outcomes uncertainty, challenging healthcare decision making. We conducted a structured literature review to identify barriers and prioritize solutions to generating economic evidence for tumor-agnostic therapies. METHODS We searched MEDLINE and Embase for English-language studies conducting economic evaluations of tumor-agnostic treatments or exploring related challenges and solutions. We included studies published by December 2022 and supplemented our review with Canadian Agency for Drugs and Technologies in Health and National Institute for Health and Care Excellence technical reports for approved tumor-agnostic therapies. Three reviewers abstracted and summarized key methodological and empirical study characteristics. Challenges and solutions were identified through authors' statements and categorized using directed content analysis. RESULTS Twenty-six studies met our inclusion criteria. Studies spanned economic evaluations (n = 5), reimbursement reviews (n = 4), qualitative research (n = 1), methods validations (n = 3), and commentaries or literature reviews (n = 13). Challenges encountered related to (1) the treatment setting and clinical trial designs, (2) a lack of data or low-quality data on clinical and cost parameters, and (3) an inability to produce evidence that meets HTA guidelines. Although attempted solutions centered on analytic approaches for managing missing data, proposed solutions highlighted the need for real-world evidence combined with life-cycle HTA to reduce future evidentiary uncertainty. CONCLUSIONS Therapeutic innovation outpaces HTA evidence generation and the methods that support it. Existing HTA frameworks must be adapted for tumor-agnostic treatments to support future economic evaluations enabling timely patient access.
Collapse
Affiliation(s)
| | | | - Halina Lam
- Cancer Control Research, BC Cancer, Vancouver, Canada
| | - Emanuel Krebs
- Cancer Control Research, BC Cancer, Vancouver, Canada
| | - Dean A Regier
- Cancer Control Research, BC Cancer, Vancouver, Canada; School of Population and Public Health, University of British Columbia, Vancouver, Canada.
| |
Collapse
|