1
|
Zhang H, Xing Y, Wang L, Hu Y, Xu Z, Chen H, Lu J, Yang J, Ding B, Hu W, Zhong J. Ultra-High-Resolution Photon-Counting Detector CT Benefits Visualization of Abdominal Arteries: A Comparison to Standard-Reconstruction. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:1891-1903. [PMID: 39455541 DOI: 10.1007/s10278-024-01232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 10/28/2024]
Abstract
This study aimed to investigate the potential benefit of ultra-high-resolution (UHR) photon-counting detector CT (PCD-CT) angiography in visualization of abdominal arteries in comparison to standard-reconstruction (SR) images of virtual monoenergetic images (VMI) at low kiloelectron volt (keV). We prospectively included 47 and 47 participants to undergo contrast-enhanced abdominal CT scans within UHR mode on a PCD-CT system using full-dose (FD) and low-dose (LD) protocols, respectively. The data were reconstructed into six series of images: FD_UHR_Br48, FD_UHR_Bv56, FD_UHR_Bv60, FD_SR_Bv40, LD_UHR_Bv48, and LD_SR_Bv40. The UHR reconstructions were performed with three kernels (Bv48, Bv56, and Bv60) within 0.2 mm. The SR were virtual monoenergetic imaging reconstruction with Bv40 kernel at 40-keV within 1 mm. Each series of axial images were reconstructed into coronal and volume-rendered images. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of seven arteries were measured. Three radiologists assessed the image quality, and visibility of nine arteries on all the images. SNR and CNR values of SR images were significantly higher than those of UHR images (P < 0.001). The SR images have higher ratings in image noise (P < 0.001), but the FD_UHR_Bv56 and FD_UHR_Bv60 images has higher rating in vessel sharpness (P < 0.001). The overall quality was not significantly different among FD_VMI_40keV, LD_VMI_40keV, FD_UHR_Bv48, and LD_UHR_Bv48 images (P > 0.05) but higher than those of FD_UHR_Bv56 and FD_UHR_Bv60 images (P < 0.001). There is no significant difference of nine abdominal arteries among six series of images of axial, coronal and volume-rendered images (P > 0.05). To conclude, 1-mm SR image of VMI at 40-keV is superior to 0.2-mm UHR regardless of which kernel is used to visualize abdominal arteries, while 0.2-mm UHR image using a relatively smooth kernel may allow similar image quality and artery visibility when thinner slice image is warranted.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Xing
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yangfan Hu
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zhihan Xu
- Siemens Healthineers, Shanghai, 201318, China
| | - Haoda Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junjie Lu
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jiarui Yang
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
| | - Bei Ding
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiguo Hu
- Department of Geriatrics and Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Medical Center On Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
2
|
D'Angelo T, Bucolo GM, Yel I, Koch V, Gruenewald LD, Martin SS, Alizadeh LS, Vogl TJ, Ascenti G, Lanzafame LRM, Mazziotti S, Blandino A, Booz C. Dual-energy CT late arterial phase iodine maps for the diagnosis of acute non-occlusive mesenteric ischemia. LA RADIOLOGIA MEDICA 2024; 129:1611-1621. [PMID: 39405018 PMCID: PMC11554692 DOI: 10.1007/s11547-024-01898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/05/2024] [Indexed: 11/12/2024]
Abstract
PURPOSE To evaluate the diagnostic accuracy of dual-energy CT (DECT) iodine maps in comparison to conventional CT series for the assessment of non-occlusive mesenteric ischemia (NOMI). MATERIAL AND METHODS We evaluated data from 142 patients (72 men; 50.7%) who underwent DECT between 2018 and 2022, with surgically confirmed diagnosis of NOMI. One board-certified radiologist performed region of interest (ROI) measurements in bowel segments on late arterial (LA) and portal venous (PV) phase DECT iodine maps as well as LA conventional series, in both ischemic and non-ischemic bowel loops, using surgical reports as reference standard, and in a control group of 97 patients. Intra- and inter-reader agreement with a second board-certified radiologist was also evaluated. Receiver operating characteristic (ROC) curve analysis was performed to calculate the optimal threshold for discriminating ischemic from non-ischemic bowel segments. Subjective image rating of LA and PV iodine maps was performed. RESULTS DECT-based iodine concentration (IC) measurements showed significant differences in LA phase iodine maps between ischemic (median:0.72; IQR 0.52-0.91 mg/mL) and non-ischemic bowel loops (5.16; IQR 3.45-6.31 mg/ml) (P <.0001). IC quantification on LA phase revealed an AUC of 0.966 for the assessment of acute bowel ischemia, significantly higher compared to both IC quantification based on PV phase (0.951) and attenuation values evaluated on LA conventional CT series (0.828). Excellent intra-observer and strong inter-observer agreements were observed for the quantification of iodine concentration. Conversely, weak inter-observer agreement was noted for conventional HU assessments. The optimal LA phase-based IC threshold for assessing bowel ischemia was 1.34 mg/mL, yielding a sensitivity of 100% and specificity of 96.48%. CONCLUSION Iodine maps based on LA phase significantly improve the diagnostic accuracy for the assessment of NOMI compared to conventional CT series and PV phase iodine maps.
Collapse
Affiliation(s)
- Tommaso D'Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital, Policlinico G. MartinoMessina, Via Consolare Valeria 1, 98100, Messina, Italy.
- Department of Radiology and Nuclear Medicine, Erasmus MC, Doctor Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Giuseppe M Bucolo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital, Policlinico G. MartinoMessina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Vitali Koch
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Leon D Gruenewald
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Simon S Martin
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Leona S Alizadeh
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Thomas J Vogl
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Giorgio Ascenti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital, Policlinico G. MartinoMessina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Ludovica R M Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital, Policlinico G. MartinoMessina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital, Policlinico G. MartinoMessina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital, Policlinico G. MartinoMessina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| |
Collapse
|
3
|
Ota T, Onishi H, Itoh T, Fukui H, Tsuboyama T, Nakamoto A, Enchi Y, Tatsumi M, Tomiyama N. Investigation of abdominal artery delineation by photon-counting detector CT. LA RADIOLOGIA MEDICA 2024; 129:1265-1274. [PMID: 39043979 PMCID: PMC11379784 DOI: 10.1007/s11547-024-01858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES To evaluate the ability of 50-keV virtual monoenergetic images (VMI) to depict abdominal arteries in abdominal CT angiography (CTA) compared with 70-keV VMI with photon-counting detector CT (PCD-CT). METHODS Fifty consecutive patients who underwent multiphase abdominal scans between March and April 2023 were included. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were quantitatively assessed for the abdominal aorta (AA), celiac artery (CeA), superior mesenteric artery (SMA), renal artery (RA), and right hepatic artery (RHA) at both 50- and 70-keV VMI. In addition, 3D images from CTA were analyzed to measure arterial lengths and evaluate the visualization of distal branches. RESULTS Significantly higher SNR and CNR were observed at 50-keV compared to 70-keV VMI for all arteries: AA (36.54 and 48.28 vs. 25.70 and 28.46), CeA (22.39 and 48.38 vs. 19.09 and 29.15), SMA (23.34 and 49.34 vs. 19.67 and 29.71), RA (22.88 and 48.84 vs. 20.15 and 29.41), and RHA (14.38 and 44.41 vs. 13.45 and 27.18), all p < 0.05. Arterial lengths were also significantly longer at 50-keV: RHA (192.6 vs. 180.3 mm), SMA (230.9 vs. 216.5 mm), and RA (95.9 vs. 92.0 mm), all p < 0.001. CONCLUSION In abdominal CTA with PCD-CT, 50-keV VMI demonstrated superior quantitative image quality compared to 70-keV VMI. In addition, 50-keV VMI 3D CTA allowed better visualization of abdominal artery branches, highlighting its potential clinical advantage for improved imaging and detailed assessment of abdominal arteries.
Collapse
Affiliation(s)
- Takashi Ota
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiromitsu Onishi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihide Itoh
- Department of CT Research and Collaboration, Siemens Healthineers, Tokyo, Japan
| | - Hideyuki Fukui
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takahiro Tsuboyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Nakamoto
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yukihiro Enchi
- Department of Medical Technology, Osaka University Hospital, Suita, Japan
| | - Mitsuaki Tatsumi
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Noriyuki Tomiyama
- Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, D1, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
4
|
Kazimierczak W, Kazimierczak N, Wilamowska J, Wojtowicz O, Nowak E, Serafin Z. Enhanced visualization in endoleak detection through iterative and AI-noise optimized spectral reconstructions. Sci Rep 2024; 14:3845. [PMID: 38360941 PMCID: PMC10869818 DOI: 10.1038/s41598-024-54502-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
To assess the image quality parameters of dual-energy computed tomography angiography (DECTA) 40-, and 60 keV virtual monoenergetic images (VMIs) combined with deep learning-based image reconstruction model (DLM) and iterative reconstructions (IR). CT scans of 28 post EVAR patients were enrolled. The 60 s delayed phase of DECTA was evaluated. Objective [noise, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR)] and subjective (overall image quality and endoleak conspicuity - 3 blinded readers assessment) image quality analyses were performed. The following reconstructions were evaluated: VMI 40, 60 keV VMI; IR VMI 40, 60 keV; DLM VMI 40, 60 keV. The noise level of the DLM VMI images was approximately 50% lower than that of VMI reconstruction. The highest CNR and SNR values were measured in VMI DLM images. The mean CNR in endoleak in 40 keV was accounted for as 1.83 ± 1.2; 2.07 ± 2.02; 3.6 ± 3.26 in VMI, VMI IR, and VMI DLM, respectively. The DLM algorithm significantly reduced noise and increased lesion conspicuity, resulting in higher objective and subjective image quality compared to other reconstruction techniques. The application of DLM algorithms to low-energy VMIs significantly enhances the diagnostic value of DECTA in evaluating endoleaks. DLM reconstructions surpass traditional VMIs and IR in terms of image quality.
Collapse
Affiliation(s)
- Wojciech Kazimierczak
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067, Bydgoszcz, Poland.
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009, Bydgoszcz, Poland.
- University Hospital No 1 in Bydgoszcz, Marii Skłodowskiej - Curie 9, 85-094, Bydgoszcz, Poland.
| | - Natalia Kazimierczak
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009, Bydgoszcz, Poland
| | - Justyna Wilamowska
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067, Bydgoszcz, Poland
- University Hospital No 1 in Bydgoszcz, Marii Skłodowskiej - Curie 9, 85-094, Bydgoszcz, Poland
| | - Olaf Wojtowicz
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067, Bydgoszcz, Poland
- University Hospital No 1 in Bydgoszcz, Marii Skłodowskiej - Curie 9, 85-094, Bydgoszcz, Poland
| | - Ewa Nowak
- University Hospital No 1 in Bydgoszcz, Marii Skłodowskiej - Curie 9, 85-094, Bydgoszcz, Poland
| | - Zbigniew Serafin
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067, Bydgoszcz, Poland
- University Hospital No 1 in Bydgoszcz, Marii Skłodowskiej - Curie 9, 85-094, Bydgoszcz, Poland
| |
Collapse
|
5
|
Srinivas-Rao S, Cao J, Marin D, Kambadakone A. Dual-Energy Computed Tomography to Photon Counting Computed Tomography: Emerging Technological Innovations. Radiol Clin North Am 2023; 61:933-944. [PMID: 37758361 DOI: 10.1016/j.rcl.2023.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Computed tomography (CT) has seen remarkable developments in the past several decades, radically transforming the role of imaging in day-to-day clinical practice. Dual-energy CT (DECT), an exciting innovation introduced in the early part of this century, has widened the scope of CT, opening new opportunities due to its ability to provide superior tissue characterization. The introduction of photon-counting CT (PCCT) heralds a paradigm shift in CT scanner technology representing another significant milestone in CT innovation. PCCT offers several advantages over DECT, such as improved spectral resolution, enhanced tissue characterization, reduced image artifacts, and improved image quality.
Collapse
Affiliation(s)
- Shravya Srinivas-Rao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA
| | - Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, Box 3808 Erwin Road, Durham, NC 27710, USA
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA.
| |
Collapse
|
6
|
Rajiah PS, Kambadakone A, Ananthakrishnan L, Sutphin P, Kalva SP. Vascular Applications of Dual-Energy Computed Tomography. Radiol Clin North Am 2023; 61:1011-1029. [PMID: 37758354 DOI: 10.1016/j.rcl.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dual- or multi-energy CT imaging provides several advantages over conventional CT in the context of vascular imaging. Specific advantages include the use of low-energy virtual monoenergetic images (VMIs) to boost iodine attenuation to salvage suboptimal enhanced studies, perform low-contrast material dose studies, and increase conspicuity of small vessels and lesions. Alternatively, high-energy VMIs reduce artifacts caused by some metals, endoprosthesis, calcium blooming, and beam hardening. Virtual non-contrast (VNC) images reduce radiation dose by eliminating the need for a true non-contrast acquisition in multiphasic CT studies. Iodine maps can be used to evaluate perfusion of tissues and lesions.
Collapse
Affiliation(s)
- Prabhakar S Rajiah
- Department of Radiology, Mayo Clinic, 200 1st Street Southwest, Rochester, MN 55905, USA.
| | | | | | - Patrick Sutphin
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Sanjeeva P Kalva
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Kazimierczak W, Nowak E, Kazimierczak N, Jankowski T, Jankowska A, Serafin Z. The value of metal artifact reduction and iterative algorithms in dual energy CT angiography in patients after complex endovascular aortic aneurysm repair. Heliyon 2023; 9:e20700. [PMID: 37876478 PMCID: PMC10590777 DOI: 10.1016/j.heliyon.2023.e20700] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023] Open
Abstract
Rationale and objectives Evaluation of the diagnostic value of linearly blended (LB) and virtual monoenergetic images (VMI) reconstruction techniques with and without metal artifacts reduction (MAR) and of adaptive statistical iterative reconstructions (ASIR) in the assessment of target vessels after branched/fenestrated endovascular aortic repair (f/brEVAR) procedures. Materials and methods CT scans of 28 patients were used in this study. Arterial phase of examination was obtained using a dual-energy fast-kVp switching scanner. CT numbers in the aorta, celiac trunk, superior mesenteric artery, and renal arteries were measured in the following reconstructions: LB, VMI 60 keV, VMI MAR 60 keV, VMI ASIR 60 % 60 keV. Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were calculated for each reconstruction. Luminal diameters (measurements at 2 levels of stent) and subjective image quality (5-point Likert scale) were assessed (2 readers, blinded to the type of reconstruction). Results The highest mean values of CNR and SNR in vascular structures were obtained in VMI MAR 60 keV (CNR 12.526 ± 2.46, SNR 17.398 ± 2.52), lower in VMI 60 keV (CNR 11.508 ± 2.01, SNR 16.524 ± 2.07) and VMI ASIR (CNR 11.086 ± 1.78, SNR 15.928 ± 1.82), and the lowest in LB (CNR 6.808 ± 0.79, SNR 11.492 ± 0.79) reconstructions. There were no statistically significant differences in the measurements of the stent width between reconstructions (p > 0.05). The highest subjective image quality was obtained in the ASIR VMI (4.25 ± 0.44) and the lowest in the MAR VMI (1.57 ± 0.5) reconstruction. Conclusion Despite obtaining the highest values of SNR and CNR in the MAR VMI reconstruction, the subjective diagnostic value was the lowest for this technique due to significant artifacts. The type of reconstruction did not significantly affect vessel diameter measurements (p > 0.05). Iterative reconstructions raised both objective and subjective image quality.
Collapse
Affiliation(s)
- Wojciech Kazimierczak
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067, Bydgoszcz, Poland
- University Hospital No 1 in Bydgoszcz, Marii Skłodowskiej – Curie 9, 85-094, Bydgoszcz, Poland
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009, Bydgoszcz, Poland
| | - Ewa Nowak
- University Hospital No 1 in Bydgoszcz, Marii Skłodowskiej – Curie 9, 85-094, Bydgoszcz, Poland
| | - Natalia Kazimierczak
- Kazimierczak Private Medical Practice, Dworcowa 13/u6a, 85-009, Bydgoszcz, Poland
| | - Tomasz Jankowski
- Jankowscy Private Dental Practice, Czerwonego Krzyża 24, 68-200, Żary, Poland
| | - Agnieszka Jankowska
- Jankowscy Private Dental Practice, Czerwonego Krzyża 24, 68-200, Żary, Poland
| | - Zbigniew Serafin
- Collegium Medicum, Nicolaus Copernicus University in Torun, Jagiellońska 13-15, 85-067, Bydgoszcz, Poland
- University Hospital No 1 in Bydgoszcz, Marii Skłodowskiej – Curie 9, 85-094, Bydgoszcz, Poland
| |
Collapse
|
8
|
D’Angelo T, Lanzafame LRM, Micari A, Blandino A, Yel I, Koch V, Gruenewald LD, Vogl TJ, Booz C, Bucolo GM, Cannizzaro MT, Ascenti G, Mazziotti S. Improved Coronary Artery Visualization Using Virtual Monoenergetic Imaging from Dual-Layer Spectral Detector CT Angiography. Diagnostics (Basel) 2023; 13:2675. [PMID: 37627934 PMCID: PMC10453590 DOI: 10.3390/diagnostics13162675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Background: To evaluate if coronary CT angiography (CCTA) monoenergetic reconstructions, obtained with a dual-layer spectral detector computed tomography (DLCT) system, offer improved image quality compared with 120 kVp conventional images without affecting the quantitative assessment of coronary stenoses. Methods: Fifty CCTA datasets (30 men; mean age: 61.6 ± 12.3 years) acquired with a DLCT system were reconstructed using virtual monoenergetic images (VMI) from 40 to 100 keV with 10 keV increment and compared with conventional images. An analysis of objective image quality was performed, evaluating the signal- and contrast-to-noise ratio. For the subjective assessment, two readers used a 5-point Likert scoring system to evaluate sharpness, noise, demarcation of coronary plaques, vascular contrast, and an overall score. Furthermore, coronary stenoses were analyzed for each vessel to describe the diagnostic agreement between monoenergetic images and conventional images. Results: The objective image analysis showed that all reconstructions from 70 keV to 40 keV show higher SNR (from 61.33 ± 12.46 to 154.22 ± 42.91, respectively) and CNR (from 51.45 ± 11.19 to 135.63 ± 39.38, respectively) compared with conventional images (all p < 0.001). The 40 keV monoenergetic images obtained the best average score for sharpness, vascular contrast, and for the overall impression (all with p < 0.001). The detection and grading of stenoses of the coronary arteries with conventional and monoenergetic images at 70 keV and 40 keV showed an overall excellent interobserver agreement (k= 0.81 [0.72-0.91]). Conclusions: The 40 keV virtual monoenergetic images obtained with a DLCT system allow the objective and subjective image quality of coronary CT angiography to be improved.
Collapse
Affiliation(s)
- Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy; (L.R.M.L.); (A.B.); (G.M.B.); (G.A.); (S.M.)
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Ludovica R. M. Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy; (L.R.M.L.); (A.B.); (G.M.B.); (G.A.); (S.M.)
| | - Antonino Micari
- Department of Clinical and Experimental Medicine, DIMED, University Hospital Messina, 98124 Messina, Italy;
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy; (L.R.M.L.); (A.B.); (G.M.B.); (G.A.); (S.M.)
| | - Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (I.Y.); (V.K.); (L.D.G.); (T.J.V.); (C.B.)
| | - Vitali Koch
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (I.Y.); (V.K.); (L.D.G.); (T.J.V.); (C.B.)
| | - Leon D. Gruenewald
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (I.Y.); (V.K.); (L.D.G.); (T.J.V.); (C.B.)
| | - Thomas J. Vogl
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (I.Y.); (V.K.); (L.D.G.); (T.J.V.); (C.B.)
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany; (I.Y.); (V.K.); (L.D.G.); (T.J.V.); (C.B.)
| | - Giuseppe M. Bucolo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy; (L.R.M.L.); (A.B.); (G.M.B.); (G.A.); (S.M.)
| | - Maria Teresa Cannizzaro
- Radiology Unit (CAST), University Hospital Catania, “Policlinico G. Rodolico–San Marco”, 95123 Catania, Italy;
| | - Giorgio Ascenti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy; (L.R.M.L.); (A.B.); (G.M.B.); (G.A.); (S.M.)
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy; (L.R.M.L.); (A.B.); (G.M.B.); (G.A.); (S.M.)
| |
Collapse
|
9
|
Estler A, Nikolaou K, Schönberg SO, Bamberg F, Froelich MF, Tollens F, Verloh N, Weiss J, Horger M, Hagen F. Is There Still a Role for Two-Phase Contrast-Enhanced CT and Virtual Monoenergetic Images in the Era of Photon-Counting Detector CT? Diagnostics (Basel) 2023; 13:diagnostics13081454. [PMID: 37189555 DOI: 10.3390/diagnostics13081454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND To compare the diagnostic characteristics between arterial phase imaging versus portal venous phase imaging, applying polychromatic T3D images and low keV virtual monochromatic images using a 1st generation photon-counting CT detector, of CT in patients with hepatocellular carcinoma (HCC). METHODS Consecutive patients with HCC, with a clinical indication for CT imaging, were prospectively enrolled. Virtual monoenergetic images (VMI) were reconstructed at 40 to 70 keV for the PCD-CT. Two independent, blinded radiologists counted all hepatic lesions and quantified their size. The lesion-to-background ratio was quantified for both phases. SNR and CNR were determined for T3D and low VMI images; non-parametric statistics were used. RESULTS Among 49 oncologic patients (mean age 66.9 ± 11.2 years, eight females), HCC was detected in both arterial and portal venous scans. The signal-to-noise ratio, the CNR liver-to-muscle, the CNR tumor-to-liver, and CNR tumor-to-muscle were 6.58 ± 2.86, 1.40 ± 0.42, 1.13 ± 0.49, and 1.53 ± 0.76 in the arterial phase and 5.93 ± 2.97, 1.73 ± 0.38, 0.79 ± 0.30, and 1.36 ± 0.60 in the portal venous phase with PCD-CT, respectively. There was no significant difference in SNR between the arterial and portal venous phases, including between "T3D" and low keV images (p > 0.05). CNRtumor-to-liver differed significantly between arterial and portal venous contrast phases (p < 0.005) for both "T3D" and all reconstructed keV levels. CNRliver-to-muscle and CNRtumor-to-muscle did not differ in either the arterial or portal venous contrast phases. CNRtumor-to-liver increased in the arterial contrast phase with lower keV in addition to SD. In the portal venous contrast phase, CNRtumor-to-liver decreased with lower keV; whereas, CNRtumor-to-muscle increased with lower keV in both arterial and portal venous contrast phases. CTDI and DLP mean values for the arterial upper abdomen phase were 9.03 ± 3.59 and 275 ± 133, respectively. CTDI and DLP mean values for the abdominal portal venous phase were 8.75 ± 2.99 and 448 ± 157 with PCD-CT, respectively. No statistically significant differences were found concerning the inter-reader agreement for any of the (calculated) keV levels in either the arterial or portal-venous contrast phases. CONCLUSIONS The arterial contrast phase imaging provides higher lesion-to-background ratios of HCC lesions using a PCD-CT; especially, at 40 keV. However, the difference was not subjectively perceived as significant.
Collapse
Affiliation(s)
- Arne Estler
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Stefan O Schönberg
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Fabian Tollens
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Niklas Verloh
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Jakob Weiss
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, 79106 Freiburg, Germany
| | - Marius Horger
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| | - Florian Hagen
- Department of Diagnostic and Interventional Radiology, University of Tuebingen, Hoppe-Seyler-Str. 3, 72076 Tuebingen, Germany
| |
Collapse
|
10
|
Agarwal A, Kumar KP, Madhusudhan KS. Utility of dual energy CT angiography in the evaluation of acute non-variceal gastrointestinal hemorrhage: comparison with digital subtraction angiography. Abdom Radiol (NY) 2023; 48:1880-1890. [PMID: 36939912 DOI: 10.1007/s00261-023-03864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/21/2023]
Abstract
PURPOSE To evaluate the utility of dual energy CT angiography (DECTA) in acute non-variceal gastrointestinal hemorrhage (ANVGIH) compared to digital subtraction angiography (DSA) as gold standard. MATERIALS AND METHODS 111 Patients (mean age: 39.2 years; 94 males) of ANVGIH who underwent both DECTA and DSA between January 2016 and September 2021 were included. Virtual monochromatic (VM) images at 10 keV increments from 40 to 70 keV and blended (120kVp equivalent) images of arterial phase of DECTA were evaluated independently by two readers blinded to DSA information. Quantitative analysis included measurement of attenuation in the major arteries (abdominal aorta, celiac artery, superior mesenteric artery), suspected vascular lesion, and lesion feeding artery to calculate contrast-to-noise ratios (CNRs) and signal-to-noise ratios (SNRs). Qualitative analysis assessed the image quality of each data set using a 3-point Likert scale. Findings on DSA were evaluated by a third reader and both DECTA and DSA were compared. RESULTS On linear blended images, vascular lesion was identified by reader 1 in 88 (79.3%) and by reader 2 in 87 (78.4%) patients and DSA showed lesion in 92 (82.9%) patients. The sensitivity and specificity of blended images and VM images of DECTA for lesion detection were not significantly different from each other. The CNR and SNR of arteries, vascular lesion and feeding artery were significantly higher at 70 keV (p < 0.005) compared to blended and other VM images. Although subjective scores for image quality were higher for 60 keV images by both readers, the difference was not statistically significant (p = 0.3). The interobserver agreement was mostly good. CONCLUSION In the assessment of ANVGIH, the 60 keV and 70 keV VM images improved the image quality and contrast, respectively, but there was no increase in diagnostic accuracy of VM image datasets compared to linearly blended images. Hence, the diagnostic utility of DECTA in ANVGIH is still uncertain.
Collapse
Affiliation(s)
- Ayushi Agarwal
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Korukanti Pradeep Kumar
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Kumble Seetharama Madhusudhan
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
11
|
D’Angelo T, Vizzari G, Lanzafame LRM, Pergolizzi F, Mazziotti S, Gaeta M, Costa F, Di Bella G, Vogl TJ, Booz C, Micari A, Blandino A. Spectral CT Imaging of Prosthetic Valve Embolization after Transcatheter Aortic Valve Implantation. Diagnostics (Basel) 2023; 13:678. [PMID: 36832165 PMCID: PMC9955456 DOI: 10.3390/diagnostics13040678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Transcatheter heart valve (THV) embolization is a rare complication of transcatheter aortic valve implantation (TAVI) generally caused by malpositioning, sizing inaccuracies and pacing failures. The consequences are related to the site of embolization, ranging from a silent clinical picture when the device is stably anchored in the descending aorta to potentially fatal outcomes (e.g., obstruction of flow to vital organs, aortic dissection, thrombosis, etc.). Here, we present the case of a 65-year-old severely obese woman affected by severe aortic valve stenosis who underwent TAVI complicated by embolization of the device. The patient underwent spectral CT angiography that allowed for improved image quality by means of virtual monoenergetic reconstructions, permitting optimal pre-procedural planning. She was successfully re-treated with implantation of a second prosthetic valve a few weeks later.
Collapse
Affiliation(s)
- Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Giampiero Vizzari
- Cardiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Ludovica R. M. Lanzafame
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Federica Pergolizzi
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Michele Gaeta
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Francesco Costa
- Cardiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Gianluca Di Bella
- Cardiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Thomas J. Vogl
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany
| | - Antonio Micari
- Cardiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| | - Alfredo Blandino
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98124 Messina, Italy
| |
Collapse
|
12
|
Booz C, Yel I, Wichmann JL, Martin SS, Koch V, Gruenewald LD, Alizadeh LS, Vogl TJ, D’Angelo T. Diagnosis of Uric Acid-Based Urine Sedimentation in the Bladder Using Dual-Energy CT. Diagnostics (Basel) 2023; 13:542. [PMID: 36766647 PMCID: PMC9913993 DOI: 10.3390/diagnostics13030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/07/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Urine sedimentation in the bladder can occur in various circumstances and can lead to urinary obstruction/stasis with associated pain. It is usually diagnosed with an ultrasound; however, CT is also used to assess the amount and to further check for urinary stones. Depending on the composition, urine sedimentation and stones can be treated medically by alkalinisation of the urine with potassium sodium hydrogen citrate in the case of uric acid-based sedimentation/stones. Due to technical developments and improved material differentiation and characterisation in CT imaging, dual-energy CT allows for differentiation of uric acid from calcium, which can be used for sedimentation/stone composition analysis. Subsequently, treatment decisions can be made based on the findings in dual-energy CT.
Collapse
Affiliation(s)
- Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany
- Division of Experimental Imaging, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany
- Division of Experimental Imaging, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Julian L. Wichmann
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany
- Division of Experimental Imaging, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Simon S. Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany
- Division of Experimental Imaging, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Leon D. Gruenewald
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany
- Division of Experimental Imaging, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Leona S. Alizadeh
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany
- Division of Experimental Imaging, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Tommaso D’Angelo
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany
- Division of Experimental Imaging, University Hospital Frankfurt, 60590 Frankfurt, Germany
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University Hospital Messina, 98158 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
13
|
Multi-Energy CT Applications. Radiol Clin North Am 2023; 61:1-21. [DOI: 10.1016/j.rcl.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Lanzafame LRM, Blandino A, Cicero G, Romeo P, Agati S, Zanai R, Celona A, Booz C, Koch V, Mazziotti S, D’Angelo T. Diagnosis and Management of Button Battery Ingestion Complicated by Tracheo-Esophageal and Aorto-Esophageal Fistulas. Diagnostics (Basel) 2022; 12:diagnostics12102369. [PMID: 36292059 PMCID: PMC9600074 DOI: 10.3390/diagnostics12102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Button battery ingestion (BBI) is common in children and its prevalence has increased in the last decades. BBI can be responsible for very severe and potentially fatal complications if not promptly detected. We describe the successful management of two cases of BBI that occurred in two previously healthy infants. Both patients presented with vague symptoms and no witness of foreign body ingestion. The prolonged time of exposure to the corrosive effects of disk batteries was responsible for the development of tracheo-esophageal fistula (TEF) and aorto-esophageal fistula (AEF). We demonstrate how prompt diagnosis and management are crucial for the infants’ survival.
Collapse
Affiliation(s)
- Ludovica R. M. Lanzafame
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, 98121 Messina, Italy
| | - Alfredo Blandino
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, 98121 Messina, Italy
| | - Giuseppe Cicero
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, 98121 Messina, Italy
| | - Placido Romeo
- Department of Diagnostic and Interventional Radiology, A.O.U. Policlinico San Marco, 95123 Catania, Italy
| | - Salvatore Agati
- Pediatric Cardiac Surgery, “Centro Cardiologico Pediatrico del Mediterraneo-Bambino Gesù”, 98039 Taormina, Italy
| | - Rosanna Zanai
- Pediatric Intensive Care Unit, “Centro Cardiologico Pediatrico del Mediterraneo-Bambino Gesù”, 98039 Taormina, Italy
| | - Antonio Celona
- Department of Radiology, “S. Vincenzo” Hospital Taormina, 98121 Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Vitali Koch
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Silvio Mazziotti
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, 98121 Messina, Italy
| | - Tommaso D’Angelo
- Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, 98121 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 Rotterdam, The Netherlands
- Correspondence:
| |
Collapse
|
15
|
Martin SS, Kolaneci J, Czwikla R, Booz C, Gruenewald LD, Albrecht MH, Thompson ZM, Lenga L, Yel I, Vogl TJ, Wichmann JL, Koch V. Dual-Energy CT for the Detection of Portal Vein Thrombosis: Improved Diagnostic Performance Using Virtual Monoenergetic Reconstructions. Diagnostics (Basel) 2022; 12:1682. [PMID: 35885585 PMCID: PMC9317258 DOI: 10.3390/diagnostics12071682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/26/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: To investigate the diagnostic performance of noise-optimized virtual monoenergetic images (VMI+) in dual-energy CT (DECT) of portal vein thrombosis (PVT) compared to standard reconstructions. Method: This retrospective, single-center study included 107 patients (68 men; mean age, 60.1 ± 10.7 years) with malignant or cirrhotic liver disease and suspected PVT who had undergone contrast-enhanced portal-phase DECT of the abdomen. Linearly blended (M_0.6) and virtual monoenergetic images were calculated using both standard VMI and noise-optimized VMI+ algorithms in 20 keV increments from 40 to 100 keV. Quantitative measurements were performed in the portal vein for objective contrast-to-noise ratio (CNR) calculation. The image series showing the greatest CNR were further assessed for subjective image quality and diagnostic accuracy of PVT detection by two blinded radiologists. Results: PVT was present in 38 subjects. VMI+ reconstructions at 40 keV revealed the best objective image quality (CNR, 9.6 ± 4.3) compared to all other image reconstructions (p < 0.01). In the standard VMI series, CNR peaked at 60 keV (CNR, 4.7 ± 2.1). Qualitative image parameters showed the highest image quality rating scores for the 60 keV VMI+ series (median, 4) (p ≤ 0.03). The greatest diagnostic accuracy for the diagnosis of PVT was found for the 40 keV VMI+ series (sensitivity, 96%; specificity, 96%) compared to M_0.6 images (sensitivity, 87%; specificity, 92%), 60 keV VMI (sensitivity, 87%; specificity, 97%), and 60 keV VMI+ reconstructions (sensitivity, 92%; specificity, 97%) (p ≤ 0.01). Conclusions: Low-keV VMI+ reconstructions resulted in significantly improved diagnostic performance for the detection of PVT compared to other DECT reconstruction algorithms.
Collapse
Affiliation(s)
- Simon S. Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (J.K.); (R.C.); (C.B.); (L.D.G.); (M.H.A.); (L.L.); (I.Y.); (T.J.V.); (J.L.W.); (V.K.)
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Jetlir Kolaneci
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (J.K.); (R.C.); (C.B.); (L.D.G.); (M.H.A.); (L.L.); (I.Y.); (T.J.V.); (J.L.W.); (V.K.)
| | - Rouben Czwikla
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (J.K.); (R.C.); (C.B.); (L.D.G.); (M.H.A.); (L.L.); (I.Y.); (T.J.V.); (J.L.W.); (V.K.)
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (J.K.); (R.C.); (C.B.); (L.D.G.); (M.H.A.); (L.L.); (I.Y.); (T.J.V.); (J.L.W.); (V.K.)
| | - Leon D. Gruenewald
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (J.K.); (R.C.); (C.B.); (L.D.G.); (M.H.A.); (L.L.); (I.Y.); (T.J.V.); (J.L.W.); (V.K.)
| | - Moritz H. Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (J.K.); (R.C.); (C.B.); (L.D.G.); (M.H.A.); (L.L.); (I.Y.); (T.J.V.); (J.L.W.); (V.K.)
| | - Zachary M. Thompson
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Lukas Lenga
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (J.K.); (R.C.); (C.B.); (L.D.G.); (M.H.A.); (L.L.); (I.Y.); (T.J.V.); (J.L.W.); (V.K.)
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (J.K.); (R.C.); (C.B.); (L.D.G.); (M.H.A.); (L.L.); (I.Y.); (T.J.V.); (J.L.W.); (V.K.)
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (J.K.); (R.C.); (C.B.); (L.D.G.); (M.H.A.); (L.L.); (I.Y.); (T.J.V.); (J.L.W.); (V.K.)
| | - Julian L. Wichmann
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (J.K.); (R.C.); (C.B.); (L.D.G.); (M.H.A.); (L.L.); (I.Y.); (T.J.V.); (J.L.W.); (V.K.)
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60590 Frankfurt, Germany; (J.K.); (R.C.); (C.B.); (L.D.G.); (M.H.A.); (L.L.); (I.Y.); (T.J.V.); (J.L.W.); (V.K.)
| |
Collapse
|
16
|
Seo JY, Joo I, Yoon JH, Kang HJ, Kim S, Kim JH, Ahn C, Lee JM. Deep learning-based reconstruction of virtual monoenergetic images of kVp-switching dual energy CT for evaluation of hypervascular liver lesions: Comparison with standard reconstruction technique. Eur J Radiol 2022; 154:110390. [PMID: 35724579 DOI: 10.1016/j.ejrad.2022.110390] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/12/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate clinical applicability of deep learning(DL)-based reconstruction of virtual monoenergetic images(VMIs) of arterial phase liver CT obtained by rapid kVp-switching dual-energy CT for evaluation of hypervascular liver lesions. MATERIALS AND METHODS We retrospectively included 109 patients who had available late arterial phase liver CT images of the liver obtained with a rapid switching kVp DECT scanner for suspicious intra-abdominal malignancies. Two VMIs of 70 keV and 40 keV were reconstructed using adaptive statistical iterative reconstruction (ASiR-V) for arterial phase scans. VMIs at 40 keV were additionally reconstructed with a vendor-agnostic DL-based reconstruction technique (ClariCT.AI, ClariPi, DL 40 keV). Qualitative, quantitative image quality and subjective diagnostic acceptability were compared according to reconstruction techniques. RESULTS In qualitative analysis, DL 40 keV images showed less image noise (4.55 vs 3.11 vs 3.95, p < 0.001), better image sharpness (4.75 vs 4.16 vs 4.3, p < 0.001), better image contrast (4.98 vs 4.72 vs 4.19, p < 0.017), better lesion conspicuity (4.61 vs 4.23 vs 3.4, p < 0.001) and diagnostic acceptability (4.59 vs 3.88 vs 4.09, p < 0.001) compared with ASiR-V 40 keV or 70 keV image sets. In quantitative analysis, DL 40 keV significantly reduced image noise relative to ASiR-V 40 keV images (49.9%, p < 0.001) and ASiR-V 70 keV images (85.2%, p = 0.012). DL 40 keV images showed significantly higher CNRlesion to the liver and SNRliver than ASiR-V 40 keV image and 70 keV images (p < 0.001). CONCLUSION DL-based reconstruction of 40 keV images using vendor-agnostic software showed greater noise reduction, better lesion conspicuity, image contrast, image sharpness, and higher overall image diagnostic acceptability than ASiR for 40 keV or 70 keV images in patients with hypervascular liver lesions.
Collapse
Affiliation(s)
- June Young Seo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sewoo Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Hyo Kim
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea; Center for Medical-IT Convergence Technology Research, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea; Research Institute, ClariPi, Seoul, Republic of Korea
| | - Chulkyun Ahn
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea; Research Institute, ClariPi, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Mahmoudi S, Lange M, Lenga L, Yel I, Koch V, Booz C, Martin S, Bernatz S, Vogl T, Albrecht M, Scholtz JE. Salvaging low contrast abdominal CT studies using noise-optimised virtual monoenergetic image reconstruction. BJR Open 2022; 4:20220006. [PMID: 36105416 PMCID: PMC9446156 DOI: 10.1259/bjro.20220006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives To assess the impact of noise-optimised virtual monoenergetic imaging (VMI+) on image quality and diagnostic evaluation in abdominal dual-energy CT scans with impaired portal-venous contrast. Methods We screened 11,746 patients who underwent portal-venous abdominal dual-energy CT for cancer staging between 08/2014 and 11/2019 and identified those with poor portal-venous contrast.Standard linearly-blended image series and VMI+ image series at 40, 50, and 60 keV were reconstructed. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of abdominal organs and vascular structures were calculated. Image noise, image contrast and overall image quality were rated by three radiologists using 5-point Likert scale. Results 452 of 11,746 (4%) exams were poorly opacified. We excluded 190 cases due to incomplete datasets or multiple exams of the same patient with a final study group of 262. Highest CNR values in all abdominal organs (liver, 6.4 ± 3.0; kidney, 17.4 ± 7.5; spleen, 8.0 ± 3.5) and vascular structures (aorta, 16.0 ± 7.3; intrahepatic vein, 11.3 ± 4.7; portal vein, 15.5 ± 6.7) were measured at 40 keV VMI+ with significantly superior values compared to all other series. In subjective analysis, highest image contrast was seen at 40 keV VMI+ (4.8 ± 0.4), whereas overall image quality peaked at 50 keV VMI+ (4.2 ± 0.5) with significantly superior results compared to all other series (p < 0.001). Conclusions Image reconstruction using VMI+ algorithm at 50 keV significantly improves image contrast and image quality of originally poorly opacified abdominal CT scans and reduces the number of non-diagnostic scans. Advances in knowledge We validated the impact of VMI+ reconstructions in poorly attenuated DECT studies of the abdomen in a big data cohort.
Collapse
Affiliation(s)
- Scherwin Mahmoudi
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Marvin Lange
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Lukas Lenga
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Ibrahim Yel
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Vitali Koch
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Simon Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Simon Bernatz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Thomas Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Moritz Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| | - Jan-Erik Scholtz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai, Frankfurt, Germany
| |
Collapse
|
18
|
Quantitative Evaluation of Small Intestinal Hemorrhage Using Energy Spectrum CT Iodine-Water Map. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9234579. [PMID: 35529271 PMCID: PMC9071872 DOI: 10.1155/2022/9234579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
The objective of this research is to analyze the quantitative evaluation of human small intestinal bleeding by observing and analyzing animal experiments of small intestinal hemorrhage in rabbit models for the convenience of understanding the role of energy spectrum CT iodine-water diagram in animal experimental research of quantitative evaluation of small intestinal bleeding in rabbit models. Compared with the energy spectrum of iodine-water graph of a rabbit CT model, the present study studied the quantitative evaluation of small intestinal bleeding by using a rabbit model instead of human. According to the method mentioned above and the analysis of experimental data, the role of energy spectrum CT iodine-water map and the quantitative evaluation of human small intestinal bleeding have been understood. It was found that the energy spectrum CT iodine-water map replaces humans in the rabbit model for quantitative evaluation of small intestinal bleeding in animal experiments, which is important in the present study. Besides, based upon the combination of theoretical and experimental data, the ten flow rates set on the base material iodine (water) maps of the arterial phase and the portal phase can be analyzed to detect the leakage of contrast agent. The yield was 100%. The research results showed that the animal experiment of quantitative assessment of small intestinal bleeding by replacing the human body with the rabbit model in the energy spectrum CT iodine-water diagram is critical to humans in the study of small intestinal hemorrhagic diseases. In addition, it can be used to adjust the treatment plan timely according to the amount of bleeding to prevent shock or heavy bleeding that threatens patients’ lives.
Collapse
|
19
|
Dual-Energy Computed Tomography Imaging in Early-Stage Hepatocellular Carcinoma: A Preliminary Study. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:2146343. [PMID: 35069041 PMCID: PMC8752295 DOI: 10.1155/2022/2146343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022]
Abstract
Background This study aims to evaluate the application of dual-energy computed tomography (DECT) for multiparameter quantitative measurement in early-stage hepatocellular carcinoma (HCC). Methods The study retrospectively enrolled 30 patients with early-stage HCC and 43 patients with early-stage HCC who received radiofrequency ablation (RFA) and underwent abdomen enhanced CT scans in GSI mode. The GSI viewer was used for image display and data analysis. The regions of interest (ROIs) were delineated in the arterial phase and the venous phase. The optimal single energy value, CT values on different energy levels (40 keV, 70 keV, 100 keV, and 140 keV), the optimal energy level, the slope of the spectral attenuation curve, the effective atomic number (Zeff), iodine concentration (IC), water concentration (WC), normalized iodine concentration (NIC), and normalized water concentration (NWC) are measured and quantitatively analyzed. Results The CT values of early-stage HCC at different single energy levels in dual phases were significantly different, and the single energy values were negatively correlated with the CT values. In the arterial phase and the venous phase, the optimal energy values for the best contrast-to-noise ratio were (68.34 ± 3.20) keV and (70.14 ± 2.01) keV, respectively. The slope of the spectral attenuation curve showed a downward trend at 40 keV, 70 keV, 100 keV, and 140 keV, but there was no statistically significant difference (P > 0.05). Zeff was positively correlated with IC and standardized IC, but has no significant correlation with WC and NWC in dual phases. Conclusion DECT imaging contains multiparameter information and has different application values for early-stage HCC, and it is necessary to select the parameters reasonably for personalized and comprehensive evaluation.
Collapse
|
20
|
Zeng Y, Geng D, Zhang J. Noise-optimized virtual monoenergetic imaging technology of the third-generation dual-source computed tomography and its clinical applications. Quant Imaging Med Surg 2021; 11:4627-4643. [PMID: 34737929 DOI: 10.21037/qims-20-1196] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 06/02/2021] [Indexed: 02/05/2023]
Abstract
The third-generation dual-source computed tomography (DSCT) is among the most advanced imaging methods. It employs noise-optimized virtual monoenergetic imaging (VMI+) technology. It uses the frequency-split method to extract high-contrast image information from low-energy images and low-noise information from images reconstructed at an optimal energy level, combining them to obtain the final image with improved quality. This review is the first to summarize the results of clinical studies that primarily and recently evaluated the VMI+ technique based on tumor, blood vessel, and other lesion classification. We aim to assist radiologists in quickly selecting the appropriate energy level when performing image reconstruction for superior image quality in clinical work and providing several ideas for future scientific research of the VMI+ technique. Presently, VMI+ reconstruction is mostly used for images of various tumors or blood vessels, including coronary plaques, coronary stents, deep vein thromboses, pulmonary embolisms (PEs), active arterial hemorrhages, and endoleaks after endovascular aneurysm repair. In addition, VMI+ has been used for imaging children's heads, liver lesions, pancreatic lacerations, and reducing metal artifacts. Regarding the reconstruction at the optimal energy level, the VMI+ technique yielded a higher image quality than the pre-optimized virtual monoenergetic imaging (VMI) technique and single-energy CT. Moreover, either low concentrations of contrast medium or low iodine injection rates can be applied before VMI+ reconstruction at a low-energy level to reduce contrast agent-related kidney injury risk. After reconstructing an image at the optimal energy level, both the image's window width and level can also be adjusted to improve the image effect's reach and diagnosis suitability. To improve image quality and lesion-imaging clarity and reduce the use of contrast agents, VMI+ reconstruction technology has been applied clinically, in which the selection of energy level is the key to the whole reconstruction process. Our review summarizes these optimal levels for radiologists' reference and suggests new ideas for the direction of future VMI+ research.
Collapse
Affiliation(s)
- Yanwei Zeng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China
| | - Daoying Geng
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, China.,Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Research, Shanghai, China
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Recent advances in computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI), and nuclear radiology have improved the diagnosis and characterization of small bowel pathology. Our purpose is to highlight the current status and recent advances in multimodality noninvasive imaging of the small bowel. RECENT FINDINGS CT and MR enterography are established techniques for small bowel evaluation. Dual-energy CT is a novel technique that has shown promise for the mesenteric ischemia and small bowel bleeding. Advanced US techniques and MRI sequences are being investigated to improve assessment of bowel inflammation, treatment response assessment, motility, and mural fibrosis. Novel radiotracers and scanner technologies have made molecular imaging the new reference standard for small bowel neuroendocrine tumors. Computational image analysis and artificial intelligence (AI) have the potential to augment physician expertise, reduce errors and variability in assessment of the small bowel on imaging. SUMMARY Advances in translational imaging research coupled with progress in imaging technology have led to a wider adoption of cross-sectional imaging for the evaluation and management of small bowel entities. Ongoing developments in image acquisition and postprocessing techniques, molecular imaging and AI have the strongest potential to transform the care and outcomes of patients with small bowel diseases.
Collapse
|
22
|
Hamid S, Nasir MU, So A, Andrews G, Nicolaou S, Qamar SR. Clinical Applications of Dual-Energy CT. Korean J Radiol 2021; 22:970-982. [PMID: 33856133 PMCID: PMC8154785 DOI: 10.3348/kjr.2020.0996] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 01/05/2023] Open
Abstract
Dual-energy CT (DECT) provides insights into the material properties of tissues and can differentiate between tissues with similar attenuation on conventional single-energy imaging. In the conventional CT scanner, differences in the X-ray attenuation between adjacent structures are dependent on the atomic number of the materials involved, whereas in DECT, the difference in the attenuation is dependent on both the atomic number and electron density. The basic principle of DECT is to obtain two datasets with different X-ray energy levels from the same anatomic region and material decomposition based on attenuation differences at different energy levels. In this article, we discuss the clinical applications of DECT and its potential robust improvements in performance and postprocessing capabilities.
Collapse
Affiliation(s)
- Saira Hamid
- Department of Radiology, University of British Columbia Hospital, University of British Columbia, Vancouver, Canada.
| | - Muhammad Umer Nasir
- Department of Medical Imaging, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| | - Aaron So
- Department of Medical Biophyics, Schulich School of Medicine and Dentistry Western University London, Ontario, Canada
| | - Gordon Andrews
- Department of Radiology, University of British Columbia Hospital, University of British Columbia, Vancouver, Canada
| | - Savvas Nicolaou
- Department of Medical Imaging, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| | - Sadia Raheez Qamar
- Department of Medical Imaging, Sunnybrook Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Shen H, Yuan X, Liu D, Huang Y, Wang Y, Jiang S, Zhang J. Multiparametric dual-energy CT for distinguishing nasopharyngeal carcinoma from nasopharyngeal lymphoma. Eur J Radiol 2021; 136:109532. [PMID: 33450663 DOI: 10.1016/j.ejrad.2021.109532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/09/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
OBJECTIVES To determine the optimal kiloelectron volt of noise-optimized virtual monoenergetic images [VMI (+)] for visualization of nasopharyngeal carcinoma (NPC) and nasopharyngeal lymphoma (NPL), and to explore the clinical value of quantitative parameters derived from dual-energy computed tomography (DECT) for distinguishing the two entities. MATERIALS AND METHODS Eighty patients including 51 with NPC and 29 with NPL were enrolled. The VMIs (+) at 40-80 keV with an interval of 10 keV were reconstructed by contrast enhanced images. The overall image quality and demarcation of lesion margins, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed in VMIs (+) and polyenergetic images (PEI). Normalized iodine concentration (NIC), slope of the spectral Hounsfield unit curve (λHU) and effective atomic number (Zeff) were calculated. Diagnostic performance was assessed by receiver operating characteristic (ROC) curve. RESULTS The 40 keV VMI (+) yielded highest overall image quality scores, demarcation of lesion margins scores, SNR and CNR. The values of NIC, λHU and Zeff in NPL were higher than those in NPC (P < 0.001). Multivariate logistic regression model combining NIC, λHU and Zeff showed the best performance for distinguishing NPC from NPL (AUC: 0.947, sensitivity: 93.1 % and specificity: 92.2 %). CONCLUSION VMI (+) reconstruction at 40 keV was optimal for visualizing NPC and NPL. Quantitative parameters derived from DECT were helpful for differentiating NPC from NPL.
Collapse
Affiliation(s)
- Hesong Shen
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Xiaoqian Yuan
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Daihong Liu
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Yuanying Huang
- Department of Oncology and Hematology, Chongqing General Hospital, No. 104 Pipashan Street, Yuzhong District, Chongqing, 400014, PR China
| | - Yu Wang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Shixi Jiang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China
| | - Jiuquan Zhang
- Department of Radiology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, No. 181 Hanyu Road, Shapingba District, Chongqing, 400030, PR China.
| |
Collapse
|
24
|
D'Angelo T, Lenga L, Arendt CT, Bucher AM, Peterke JL, Caruso D, Mazziotti S, Ascenti G, Blandino A, Othman AE, Martin SS, Albrecht MH, Bodelle B, Vogl TJ, Wichmann JL. Carotid and cerebrovascular dual-energy computed tomography angiography: Optimization of window settings for virtual monoenergetic imaging reconstruction. Eur J Radiol 2020; 130:109166. [PMID: 32693314 DOI: 10.1016/j.ejrad.2020.109166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 04/25/2020] [Accepted: 07/05/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Dedicated post-processing of dual-energy computed tomography angiography (DE-CTA) datasets has been shown to allow for increased vascular contrast. The goal of our study was to define optimal window settings for displaying virtual monoenergetic images (VMI) reconstructed from dual-energy carotid and cerebrovascular DE-CTA. METHODS Fifty-seven patients who underwent clinically-indicated carotid and cerebrovascular third-generation dual-source DE-CTA were retrospectively evaluated. Standard linearly-blended (M_0.6), 70-keV traditional VMI (M70), and 40-keV noise-optimized VMI (M40+) reconstructions were analyzed. For M70 and M40+ datasets, the subjectively best window setting (width and level, B-W/L) was independently determined by two observers and subsequently related with aortic arch attenuation to calculate optimized values (O-W/L) using linear regression. Subjective evaluation of image quality (IQ) between W/L settings were assessed by two additional readers. Repeated measures analysis of variance were performed to compare W/L settings and IQ indices between M_0.6, M70, and M40 + . RESULTS B-W/L and O-W/L for M70 were 580/210 and 560/200, and for M40+ were 1630/570 and 1560/550, respectively, higher than standard DE-CTA W/L settings (450/100). Highest subjective scores were observed for M40+ regarding overall IQ (all p < 0.001). CONCLUSION Application of O-W/L settings is mandatory to optimize subjective IQ of VMI reconstructions of DE-CTA.
Collapse
Affiliation(s)
- Tommaso D'Angelo
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Lukas Lenga
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christophe T Arendt
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Andreas M Bucher
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Julia L Peterke
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Damiano Caruso
- Department of Radiological Sciences, Oncological and Pathological Sciences, "La Sapienza'' University Hospital, Latina, Italy
| | - Silvio Mazziotti
- Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Giorgio Ascenti
- Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Alfredo Blandino
- Department of Biomedical Sciences and Morphological and Functional Imaging, "G. Martino" University Hospital Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Ahmed E Othman
- Department for Diagnostic and Interventional Radiology, Eberhard Karls University Tuebingen, University Hospital Tübingen, Tübingen, Germany
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Boris Bodelle
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Julian L Wichmann
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
25
|
Lee KYG, Cheng HMJ, Chu CY, Tam CWA, Kan WK. Metal artifact reduction by monoenergetic extrapolation of dual-energy CT in patients with metallic implants. J Orthop Surg (Hong Kong) 2020; 27:2309499019851176. [PMID: 31138022 DOI: 10.1177/2309499019851176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE The objective of this study is to assess artifact reduction and image quality using dual-energy computed tomography (DECT) and metal artifact reduction techniques in patients with metallic implants. METHODS Forty patients with metallic implants, who had targeted CT performed by DECT during March to September 2018, were prospectively recruited. Post-processing with monoenergetic extrapolation at 70 and 150 keV was performed. Forty matched controls with metallic implants with single-energy CT (SECT) performed were selected. Attenuation value, noise, and signal-to-noise ratio (SNR) at the site of maximal artifact were measured at muscle and fat areas. Image quality of three sets of images (70 keV, 150 keV, and SECT) was assessed by two independent reviewers using a 5-point Likert-type scale. Statistical analysis of measured values, Likert-type scales, and radiation doses (volume CT dose index (CTDIvol)) of DECT and SECT were performed with Mann-Whitney U test. RESULTS As compared to SECT, high keV reconstruction of DECT show (1) significantly higher values within muscle and fat surrounding the implant (DECT vs. SECT-muscle: -96 Hounsfield units (HU) vs. -405 HU, fat: -115 HU vs. -301 HU; p < 0.001), (2) significantly lower mean image noise (75 HU vs. 129 HU; p = 0.02), and (3) higher SNR (-0.8 vs. -4.3; p < 0.001). In addition, image quality of high keV reconstruction was rated superior to the other two groups on Likert-type scales ( p < 0.001). The mean radiation doses (CTDIvol) were comparable between DECT and SECT (14.2 mGy vs. 19.3 mGy; p = 0.08). CONCLUSION For patients with metallic implants, monoenergetic extrapolation of DECT at high keV can reduce metal artifacts, increase SNR, and improve qualitative image quality at comparable radiation dose.
Collapse
Affiliation(s)
- Ka Yin Gregory Lee
- 1 Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
| | - Hei Man Joyce Cheng
- 1 Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
| | - Chi Yeung Chu
- 1 Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
| | - Chi Wai Annie Tam
- 1 Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
| | - Wai Kuen Kan
- 1 Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Chai Wan, Hong Kong
| |
Collapse
|
26
|
Trabzonlu TA, Mozaffary A, Kim D, Yaghmai V. Dual-energy CT evaluation of gastrointestinal bleeding. Abdom Radiol (NY) 2020; 45:1-14. [PMID: 31728614 DOI: 10.1007/s00261-019-02226-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Gastrointestinal bleeding is a common cause for hospital admissions and is an important cause of morbidity and mortality. Although endoscopy is accepted as the standard initial diagnostic modality for the evaluation of gastrointestinal bleeding, multiphasic computed tomography (CT) imaging has become an alternative diagnostic tool. Dual-energy CT with post-processing techniques may have additional advantages over single-energy computed tomography in evaluation of gastrointestinal bleeding. In this article, we discuss the role of dual-energy CT in the evaluation of gastrointestinal bleeding with potential advantages over conventional CT and limitations.
Collapse
|
27
|
Do TD, Melzig C, Vollherbst DF, Pereira PL, Kauczor HU, Kachelrieß M, Sommer CM. The value of iterative metal artifact reduction algorithms during antenna positioning for CT-guided microwave ablation. Int J Hyperthermia 2019; 36:1223-1232. [PMID: 31814464 DOI: 10.1080/02656736.2019.1690168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Objectives: To compare image quality between filtered back projection (FBP) and iterative reconstruction algorithm and dedicated metal artifact reduction (iMAR) algorithms during antenna positioning for computed tomography-guided microwave ablation (MWA).Materials and methods: An MWA antenna was positioned in the liver of five pigs under CT guidance. Different exposure settings (120kVp/200mAs-120kVp/50mAs) and image reconstruction techniques (FBP, iterative reconstruction with and without iMAR) were applied. Quantitative image analysis included density measurements in six positions (e.g., liver in extension of the antenna [ANTENNA] and liver >3 cm away from the antenna [LIVER-1]). Qualitative image analysis included assessment of overall quality, image noise, artifacts at the antenna tip, artifacts in liver parenchyma bordering antenna tip and newly generated artifacts. Two independent observers performed the analyses twice and interreader agreement was compared with Bland-Altman analysis.Results: For all exposure and reconstruction settings, density measurements for ANTENNA were significantly higher for the I30-1 iMAR compared with FBP and I30-1 (e.g., 8.3-17.2HU vs. -104.5 to 155.1HU; p ≤ 0.01, respectively). In contrast, for all exposure settings, density measurements for LIVER-1 were comparable between FBP and I30-1 iMAR (e.g., 49.4-50.4HU vs. 50.1-52.5U, respectively). For all exposure and reconstruction settings, subjective image quality for LIVER-1 was better for the I30-1 iMAR algorithm compared with FBP and I30-1. Bland-Altman interobserver agreement was from -0.2 to 0.2 for FBP and iMAR, and Cohen's kappa was 0.74.Conclusion: Iterative algorithms I30-1 with iMAR algorithm improves image quality during antenna positioning and placement for CT-guided MWA and is applicable over a range of exposure settings.
Collapse
Affiliation(s)
- Thuy Duong Do
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Claudius Melzig
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Dominik F Vollherbst
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Philippe L Pereira
- Clinic for Radiology, Minimally-Invasive Therapies and Nuclear Medicine, SLK Kliniken Heilbronn GmbH, Heilbronn, Germany
| | - Hans-Ulrich Kauczor
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marc Kachelrieß
- Medical Physics in Radiology, German Cancer Research Center (Dkfz), Heidelberg, Germany
| | - Christof M Sommer
- Clinic for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany.,Clinic for Diagnostic and Interventional Radiology, Klinikum Stuttgart, Stuttgart, Germany
| |
Collapse
|
28
|
Albrecht MH, Vogl TJ, Martin SS, Nance JW, Duguay TM, Wichmann JL, De Cecco CN, Varga-Szemes A, van Assen M, Tesche C, Schoepf UJ. Review of Clinical Applications for Virtual Monoenergetic Dual-Energy CT. Radiology 2019; 293:260-271. [DOI: 10.1148/radiol.2019182297] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Arendt CT, Czwikla R, Lenga L, Wichmann JL, Albrecht MH, Booz C, Martin SS, Leithner D, Tischendorf P, Blandino A, Vogl TJ, D'Angelo T. Improved coronary artery contrast enhancement using noise-optimised virtual monoenergetic imaging from dual-source dual-energy computed tomography. Eur J Radiol 2019; 122:108666. [PMID: 31786506 DOI: 10.1016/j.ejrad.2019.108666] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/04/2019] [Accepted: 09/12/2019] [Indexed: 01/15/2023]
Abstract
PURPOSE To define optimal kiloelectron volt (keV) settings for virtual monoenergetic imaging (VMI) reconstruction at dual-energy coronary computed tomography angiography (DE-CCTA). METHOD Fifty-one DE-CCTA data sets (33 men; mean age, 63.9 ± 13.2 years) were reconstructed as standard linearly-blended images (F_0.6; 60% of 90 kVp, 40% of 150 kVpSn), and with traditional (VMI) and noise-optimised (VMI+) algorithms from 40 to 100 keV in 10-keV intervals. Objective image quality was assessed with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) measurements. Three observers subjectively evaluated vascular contrast, image sharpness, noise and delineation of coronary plaques. RESULTS Median values for objective image analysis were highest in VMI + series at 40 keV (SNR, 44.5; CNR: 33.5), significantly superior (allp < 0.001) to the best VMI series at 70 keV (SNR, 28.1; CNR, 18.4) and standard F_0.6 images (SNR, 23.2; CNR, 15.6). Overall subjective metrics achieved higher scores at 40-keV VMI+ series in comparison to 70-keV VMI series and F_0.6 images (all p < 0.001), with optimal vascular contrast (5; ICC, 0.90), good image sharpness (4; 0.88), low noise (4; 0.82), and optimal plaque delineation (5; 0.89). CONCLUSIONS DE-CCTA image reconstruction with 40-keV VMI + allows for significant improvement of both objective and subjective image quality.
Collapse
Affiliation(s)
- Christophe T Arendt
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Rouben Czwikla
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Lukas Lenga
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Julian L Wichmann
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Moritz H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany.
| | - Christian Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Doris Leithner
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Patricia Tischendorf
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Alfredo Blandino
- Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico G. Martino - University Hospital Messina, Messina, Italy
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Tommaso D'Angelo
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany; Section of Radiological Sciences, Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico G. Martino - University Hospital Messina, Messina, Italy
| |
Collapse
|
30
|
D'Angelo T, Cicero G, Mazziotti S, Ascenti G, Albrecht MH, Martin SS, Othman AE, Vogl TJ, Wichmann JL. Dual energy computed tomography virtual monoenergetic imaging: technique and clinical applications. Br J Radiol 2019; 92:20180546. [PMID: 30919651 DOI: 10.1259/bjr.20180546] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dual energy CT (DECT) has evolved into a commonly applied imaging technique in clinical routine due to its unique post-processing opportunities for improved evaluation of all body areas. Reconstruction of virtual monoenergetic imaging (VMI) series has shown beneficial effects for both non-contrast and contrast-enhanced DECT due to the flexibility to calculate low-keV VMI reconstructions to increase contrast and iodine attenuation, or to compute high-keV VMI reconstructions to reduce beam-hardening artefacts. The goal of this review article is to explain the technical background of VMI and noise-optimized VMI+ algorithms and to give an overview of useful clinical applications of the VMI technique in DECT of various body regions.
Collapse
Affiliation(s)
- Tommaso D'Angelo
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico G. Martino - University Hospital Messina , Messina , Italy.,2 Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt , Frankfurt , Germany
| | - Giuseppe Cicero
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico G. Martino - University Hospital Messina , Messina , Italy
| | - Silvio Mazziotti
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico G. Martino - University Hospital Messina , Messina , Italy
| | - Giorgio Ascenti
- 1 Department of Biomedical Sciences and Morphological and Functional Imaging, Policlinico G. Martino - University Hospital Messina , Messina , Italy
| | - Moritz H Albrecht
- 2 Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt , Frankfurt , Germany
| | - Simon S Martin
- 2 Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt , Frankfurt , Germany
| | - Ahmed E Othman
- 3 Department of Diagnostic and Interventional Radiology, Eberhard Karls University Tübingen , Tübingen , Germany
| | - Thomas J Vogl
- 2 Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt , Frankfurt , Germany
| | - Julian L Wichmann
- 2 Department of Diagnostic and Interventional Radiology, Division of Experimental Imaging, University Hospital Frankfurt , Frankfurt , Germany
| |
Collapse
|
31
|
Role of dual energy CT to improve diagnosis of non-traumatic abdominal vascular emergencies. Abdom Radiol (NY) 2019; 44:406-421. [PMID: 30143817 DOI: 10.1007/s00261-018-1741-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Computed tomography angiography (CTA) is the modality of choice to evaluate abdominal vascular emergencies (AVE). CTA protocols are often complex and require acquisition of multiple phases to enable a variety of diagnosis such as acute bleeding, pseudoaneurysms, bowel ischemia, and dissection. With single energy CT (SECT), differentiating between calcium, coagulated blood, and contrast agents can be challenging based on their attenuation, especially when in small quantity or present as a mixture. With dual-energy CT (DECT), virtual monoenergetic (VM) and material decomposition (MD) image reconstructions enable more robust tissue characterization, improve contrast-enhancement, and reduce beam hardening artifacts. This article will demonstrate how radiologists can utilize DECT for various clinical scenarios in assessment of non-traumatic AVE.
Collapse
|
32
|
High-Pitch Wide-Coverage Fast-Kilovoltage-Switching Dual-Energy CT: Impact of Pitch on Noise, Spatial Resolution, and Iodine Quantification in a Phantom Study. AJR Am J Roentgenol 2019; 212:W64-W72. [PMID: 30645160 DOI: 10.2214/ajr.18.19851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The purpose of this study was to assess the impact of high pitch values on image noise, spatial resolution, and iodine quantification in single-source wide-coverage fast-kilovoltage-switching dual-energy CT (DECT). MATERIALS AND METHODS Two phantom experiments were conducted. First, image noise and spatial resolution in the x-, y-, and z-directions were assessed. Second, the accuracy of iodine quantification was investigated with multiple-size phantoms with pure iodine and blood-iodine inserts. Both phantoms were scanned repeatedly with a third-generation fast-kilovoltage-switching DECT scanner with a collimation width of 80 mm at four different pitch values (0.5, 0.99, 1.375, 1.53) and three different gantry rotation times (0.6, 0.8, 1.0 second). Image noise, spatial resolution, and absolute error of iodine concentration (E) were measured. A linear mixed effects model was used to determine the effect of pitch, rotation time, and size on the error of iodine concentration. RESULTS Image noise and xy spatial resolution were comparable among the four pitch values. Spatial resolution in the z-direction was inferior and had higher variance at a low pitch of 0.5 compared with pitches of 0.99, 1.375, and 1.53. Error of iodine concentration was significantly affected by pitch and rotation time (p < 0.001). E decreased with increasing pitch and decreasing rotation time. In detail, mean E was 0.91 ± 0.47 mg I/mL for a pitch of 0.5, 0.52 ± 0.29 mg I/mL for 0.99, 0.44 ± 0.25 mg I/mL for 1.375, and 0.40 ± 0.25 mg I/mL for 1.53. CONCLUSION High-pitch wide-coverage fast-kilovoltage-switching DECT can be performed without impairing image quality or iodine quantification, and the results are superior to those of imaging at a low pitch of 0.5.
Collapse
|
33
|
Martin SS, van Assen M, Griffith LP, De Cecco CN, Varga-Szemes A, Bauer MJ, Wichmann JL, Vogl TJ, Schoepf UJ. Dual-Energy CT Pulmonary Angiography: Quantification of Disease Burden and Impact on Management. CURRENT RADIOLOGY REPORTS 2018. [DOI: 10.1007/s40134-018-0297-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Lenga L, Czwikla R, Wichmann JL, Leithner D, Albrecht MH, D'Angelo T, Arendt CT, Booz C, Hammerstingl R, Vogl TJ, Martin SS. Dual-energy CT in patients with abdominal malignant lymphoma: impact of noise-optimised virtual monoenergetic imaging on objective and subjective image quality. Clin Radiol 2018; 73:833.e19-833.e27. [PMID: 29884524 DOI: 10.1016/j.crad.2018.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 04/25/2018] [Indexed: 12/12/2022]
Abstract
AIM To investigate the impact of noise-optimised virtual monoenergetic imaging (VMI+) reconstructions on quantitative and qualitative image parameters in patients with malignant lymphoma at dual-energy computed tomography (DECT) examinations of the abdomen. MATERIALS AND METHODS Thirty-five consecutive patients (mean age, 53.8±18.6 years; range, 21-82 years) with histologically proven malignant lymphoma of the abdomen were included retrospectively. Images were post-processed with standard linear blending (M_0.6), traditional VMI, and VMI+ technique at energy levels ranging from 40 to 100 keV in 10 keV increments. Signal-to-noise (SNR) and contrast-to-noise ratios (CNR) were objectively measured in lymphoma lesions. Image quality, lesion delineation, and image noise were rated subjectively by three blinded observers using five-point Likert scales. RESULTS Quantitative image quality parameters peaked at 40-keV VMI+ (SNR, 15.77±7.74; CNR, 18.27±8.04) with significant differences compared to standard linearly blended M_0.6 (SNR, 7.96±3.26; CNR, 13.55±3.47) and all traditional VMI series (p<0.001). Qualitative image quality assessment revealed significantly superior ratings for image quality at 60-keV VMI+ (median, 5) in comparison with all other image series (p<0.001). Assessment of lesion delineation showed the highest rating scores for 40-keV VMI+ series (median, 5), while lowest subjective image noise was found for 100-keV VMI+ reconstructions (median, 5). CONCLUSION Low-keV VMI+ reconstructions led to improved image quality and lesion delineation of malignant lymphoma lesions compared to standard image reconstruction and traditional VMI at abdominal DECT examinations.
Collapse
Affiliation(s)
- L Lenga
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - R Czwikla
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - J L Wichmann
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany.
| | - D Leithner
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - M H Albrecht
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany; Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - T D'Angelo
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany; Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - C T Arendt
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - C Booz
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - R Hammerstingl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - T J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - S S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
35
|
Albrecht MH, De Cecco CN, Schoepf UJ, Spandorfer A, Eid M, De Santis D, Varga-Szemes A, van Assen M, von Knebel-Doeberitz PL, Tesche C, Puntmann VO, Nagel E, Vogl TJ, Nance JW. Dual-energy CT of the heart current and future status. Eur J Radiol 2018; 105:110-118. [PMID: 30017266 DOI: 10.1016/j.ejrad.2018.05.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022]
Abstract
Several applications utilizing dual-energy cardiac CT (DECT) have recently transitioned from the realm of research into clinical workflows. DECT acquisition techniques and subsequent post-processing can provide improved qualitative analysis, allow quantitative imaging, and have the potential to decrease requisite radiation and contrast material doses. Additionally, several experimental DECT techniques are pending further investigation and may improve the diagnostic accuracy of cardiac CT and/or provide evaluation of emerging imaging biomarkers in the future. This review article will summarize the major applications utilizing DECT in diagnosis of cardiovascular disease, including both the clinically used and investigational techniques examined to date.
Collapse
Affiliation(s)
- Moritz H Albrecht
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States; University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany.
| | - Carlo N De Cecco
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - U Joseph Schoepf
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Adam Spandorfer
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Marwen Eid
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Domenico De Santis
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States; University of Rome "Sapienza", Department of Radiological Sciences, Oncological and Pathological Sciences, Latina, Italy.
| | - Akos Varga-Szemes
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Marly van Assen
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States; University Medical Center Groningen, Center for Medical Imaging, Department of Radiology, Groningen, The Netherlands.
| | - Philipp L von Knebel-Doeberitz
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Christian Tesche
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States; Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich, Germany.
| | - Valentina O Puntmann
- University Hospital Frankfurt, Institute of Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Frankfurt, Germany.
| | - Eike Nagel
- University Hospital Frankfurt, Institute of Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Frankfurt, Germany.
| | - Thomas J Vogl
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany.
| | - John W Nance
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| |
Collapse
|
36
|
Zhao L, Li F, Zhang Z, Zhang Z, Jiang Y, Wang X, Gu J, Li D. Assessment of an advanced virtual monoenergetic reconstruction technique in cerebral and cervical angiography with third-generation dual-source CT: Feasibility of using low-concentration contrast medium. Eur Radiol 2018; 28:4379-4388. [PMID: 29654560 DOI: 10.1007/s00330-018-5407-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To investigate the feasibility of low-concentration contrast media (LC-CM) in cerebral and cervical dual-energy CT angiography (DE-CTA) using an advanced monoenergetic (Mono+) reconstruction technique. METHODS Sixty-five consecutive patients prospectively selected to undergo cerebral and cervical DE-CTA were randomised into two groups: 32 patients (63.7 ± 9.7 years) in the high-concentration contrast medium (HC-CM) group with iopromide 370 and 33 patients (60.7 ± 10.8 years) in the low-concentration contrast medium (LC-CM) group with iodixanol 270. Traditional monoenergetic (Mono) and Mono+ images from 40 to 100 keV levels (at 10-keV intervals) and the standard mixed (Mixed, 120 kVp equivalent) images were reconstructed. Subjective image quality parameters included the contrast-to-noise ratio (CNR) and objective image quality parameters were evaluated and compared between the two groups. RESULTS The 40-keV Mono+ images in the LC-CM group showed comparable objective CNR (common carotid arteries: 83.7 ± 24.5 vs. 78.1 ± 23.2; internal carotid arteries: 82.2 ± 26.8 vs. 76.8 ± 24.1; middle cerebral arteries: 72.5 ± 24.6 vs. 70.6 ± 19.2; all p > 0.05) and subjective image scores (3.95 ± 0.19 vs. 3.83 ± 0.35; p > 0.05) compared with Mixed images in the HC-CM group. CONCLUSION The Mono+ reconstruction technique could reduce the concentration of iodinated CM in the diagnosis of cerebral and cervical angiography. KEY POINTS • Mono+ shows decreased noise and superior CNR compared with Mono. • The 40-keV Mono+ images show the highest CNR in the LC-CM group. • The Mono+ reconstruction technique could reduce the concentration of iodinated CM.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fengtan Li
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zewei Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Zhang Zhang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yingjian Jiang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xinyu Wang
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jun Gu
- Siemens Healthineers, Beijing, 100102, China
| | - Dong Li
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
37
|
Increasing Role of Dual-Energy CT in Noninvasive Vascular Imaging. J Vasc Interv Radiol 2017; 28:1267-1268. [DOI: 10.1016/j.jvir.2017.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 11/18/2022] Open
|