1
|
Buchberger DS, Khurana R, Bolen M, Videtic GMM. The Treatment of Patients with Early-Stage Non-Small Cell Lung Cancer Who Are Not Candidates or Decline Surgical Resection: The Role of Radiation and Image-Guided Thermal Ablation. J Clin Med 2024; 13:7777. [PMID: 39768701 PMCID: PMC11727850 DOI: 10.3390/jcm13247777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
The standard of care for early-stage NSCLC has historically been surgical resection. Given the association of lung cancer with smoking, a large number of early-stage patients also have active smoking-related medical comorbidities such as COPD precluding surgery. The current approach for treating such inoperable patients is frequently considered to be stereotactic body radiation therapy (SBRT). SBRT (also known as stereotactic ablative radiation therapy or SABR) is a curative modality that precisely delivers very high dose radiation in few (typically <5) sessions. That said, because of their minimal invasiveness and repeatable nature, image-guided thermal ablation therapies such as radiofrequency ablation (RFA), microwave ablation (MWA), and cryoablation (CA) have also been used to treat early-stage lung tumors. For those patients deemed to have "high operative risk" (i.e., those who cannot tolerate lobectomy, but are candidates for sublobar resection), the appropriateness of potential alternatives [e.g., SBRT; ablation] to surgery is an active area of investigation. In the absence of completed randomized phase III trials, the approach to comparing outcomes between surgery, SBRT, or ablative therapies by their efficacy or equivalence is complex. An overview of the role of SBRT and other non-surgical modalities in the management of early-stage lung cancer is the subject of the present review.
Collapse
Affiliation(s)
- David S. Buchberger
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Rishabh Khurana
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH 44195, USA; (R.K.); (M.B.)
| | - Michael Bolen
- Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, OH 44195, USA; (R.K.); (M.B.)
| | - Gregory M. M. Videtic
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
2
|
Pennathur A, Lanuti M, Merritt RE, Wolf A, Keshavarz H, Loo BW, Suh RD, Mak RH, Brunelli A, Criner GJ, Mazzone PJ, Walsh G, Liptay M, Wafford QE, Murthy S, Marshall MB, Tong B, Pettiford B, Rocco G, Luketich J, Schuchert MJ, Varghese TK, D'Amico TA, Swanson SJ. Systematic Review of the Comparative Studies of Image-Guided Thermal Ablation, Stereotactic Radiosurgery, and Sublobar Resection for Treatment of High-Risk Patients with Stage I Non-Small Cell Lung Cancer. Semin Thorac Cardiovasc Surg 2024; 37:106-113. [PMID: 39675493 DOI: 10.1053/j.semtcvs.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/17/2024]
Abstract
The Clinical Practice Standards Committee of the American Association for Thoracic Surgery assembled an expert panel and conducted a systematic review of the literature detailing studies directly comparing treatment options for high-risk patients with stage I non-small cell lung cancer (NSCLC). A systematic search was performed to identify publications comparing outcomes following image-guided thermal ablation (IGTA), stereotactic ablative radiotherapy (SABR; also called stereotactic body radiation therapy [SBRT] and stereotactic radiosurgery [SRS]), and sublobar resection-the main treatment options applicable to high-risk patients with stage I NSCLC. There were no publications detailing completed randomized controlled trials comparing these treatment options. Several retrospective studies with comparisons were identified, some of which used large, population-based registries. The findings of several of these studies are summarized in this Expert Review article. Registry studies comparing IGTA with SABR in propensity-score matched patients with stage I NSCLC found no difference in overall survival. The use of thermal ablation was less frequent and had wider variation depending on geographic region as compared with SABR, however. Studies yielding high-quality data comparing SABR with sublobar resection have been limited. When comparing sublobar resection with IGTA, sublobar resection was associated with superior primary tumor control and overall survival in the retrospective cohort studies. Retrospective comparative studies are difficult to assess due to the inherent biases or treatment selection and the definitions of loco-regional control. Prospective randomized trials are needed to fully evaluate the outcomes of treatment options applicable to high-risk patients with early-stage lung cancer.
Collapse
Affiliation(s)
- Arjun Pennathur
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania.
| | - Michael Lanuti
- Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert E Merritt
- Division of Thoracic Surgery, The Ohio State University-Wexner Medical Center, Columbus, Ohio
| | - Andrea Wolf
- Department of Thoracic Surgery, The Icahn School of Medicine at Mount Sinai and Mount Sinai Hospital, New York, New York
| | - Homa Keshavarz
- Department of Family Medicine, McMaster University, Ontario, Canada
| | - Billy W Loo
- Department of Radiation Oncology & Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Robert D Suh
- Department of Radiological Sciences, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Raymond H Mak
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Alessandro Brunelli
- Department of Thoracic Surgery, St. James's University Hospital, Leeds, United Kingdom
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | | | - Garrett Walsh
- Department of Thoracic Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Michael Liptay
- Department of Cardiovascular and Thoracic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Q Eileen Wafford
- The American Association for Thoracic Surgery, Beverly, Massachusetts
| | - Sudish Murthy
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - M Blair Marshall
- Sarasota Memorial Hospital, Jellison Cancer Institute, Sarasota, Florida
| | - Betty Tong
- Department of Thoracic Surgery, Duke University Hospital, Durham, North Carolina
| | - Brian Pettiford
- Section of Cardiothoracic Surgery, Ochsner Health System, New Orleans, Louisiana
| | - Gaetano Rocco
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Matthew J Schuchert
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, and UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Thomas K Varghese
- Division of Cardiothoracic Surgery, University of Utah, Huntsman Cancer Center, Salt Lake City, Utah
| | - Thomas A D'Amico
- Department of Surgery, Duke Cancer Institute, Durham, North Carolina
| | - Scott J Swanson
- Division of Thoracic Surgery, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
3
|
Jungblut L, Rizzo SM, Ebner L, Kobe A, Nguyen-Kim TDL, Martini K, Roos J, Puligheddu C, Afshar-Oromieh A, Christe A, Dorn P, Funke-Chambour M, Hötker A, Frauenfelder T. Advancements in lung cancer: a comprehensive perspective on diagnosis, staging, therapy and follow-up from the SAKK Working Group on Imaging in Diagnosis and Therapy Monitoring. Swiss Med Wkly 2024; 154:3843. [PMID: 39835913 DOI: 10.57187/s.3843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
In 2015, around 4400 individuals received a diagnosis of lung cancer, and Switzerland recorded approximately 3200 deaths related to lung cancer. Advances in detection, such as lung cancer screening and improved treatments, have led to increased identification of early-stage lung cancer and higher chances of long-term survival. This progress has introduced new considerations in imaging, emphasising non-invasive diagnosis and characterisation techniques like radiomics. Treatment aspects, such as preoperative assessment and the implementation of immune response evaluation criteria in solid tumours (iRECIST), have also seen advancements. For those undergoing curative treatment for lung cancer, guidelines propose follow-up with computed tomography (CT) scans within a specific timeframe. However, discrepancies exist in published guidelines, and there is a lack of universally accepted recommendations for follow-up procedures. This white paper aims to provide a certain standard regarding the use of imaging on the diagnosis, staging, treatment and follow-up of patients with lung cancer.
Collapse
Affiliation(s)
- Lisa Jungblut
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stefania Maria Rizzo
- Service of Radiology, Imaging Institute of Southern Switzerland, Clinica Di Radiologia EOC, Lugano, Switzerland
| | - Lukas Ebner
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Adrian Kobe
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thi Dan Linh Nguyen-Kim
- Institute of Radiology and Nuclear Medicine, Stadtspital Triemli Zurich, Zurich, Switzerland
| | - Katharina Martini
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Justus Roos
- Department of Radiology and Nuclear Medicine, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Carla Puligheddu
- Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Christe
- Department of Radiology SLS, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manuela Funke-Chambour
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreas Hötker
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Thomas Frauenfelder
- Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Bhagavatula SK, Graur A, Fintelmann FJ. Lung Needle Biopsy and Lung Ablation: Indications, Patient Management, and Postprocedure Imaging Findings. Clin Chest Med 2024; 45:307-323. [PMID: 38816090 DOI: 10.1016/j.ccm.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The clinical role and use of percutaneous transthoracic needle biopsy (TTNB) and ablation of lung tumors are evolving. Here we discuss important considerations for referring providers, including current and emerging indications supported by guidelines, critical aspects of pre and postprocedure patient management, and expected postprocedure imaging findings.
Collapse
Affiliation(s)
- Sharath K Bhagavatula
- Department of Radiology, Brigham and Women's Hospital, Dana Farber Cancer Institute, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Alexander Graur
- Department of Radiology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Florian J Fintelmann
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA.
| |
Collapse
|
5
|
Udelsman BV, Canavan ME, Zhan PL, Ely S, Park HS, Boffa DJ, Mase VJ. Overall survival in low-comorbidity patients with stage I non-small cell lung cancer who chose stereotactic body radiotherapy compared to surgery. J Thorac Cardiovasc Surg 2024; 167:822-833.e7. [PMID: 37500052 DOI: 10.1016/j.jtcvs.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/10/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE To evaluate trends in the utilization of stereotactic body radiotherapy (SBRT) and to compare overall survival (OS) of patients with early-stage non-small cell lung cancer (NSCLC) undergoing SBRT versus those undergoing surgery. METHODS The National Cancer Database was queried for patients without documented comorbidities who underwent surgical resection (lobectomy, segmentectomy, or wedge resection) or SBRT for clinical stage I NSCLC between 2012 and 2018. Peritreatment mortality and 5-year OS were compared among propensity score-matched cohorts. RESULTS A total of 30,658 patients were identified, including 24,729 (80.7%) who underwent surgery and 5929 (19.3%) treated with SBRT. Between 2012 and 2018, the proportion of patients receiving SBRT increased from 15.9% to 26.0% (P < .001). The 30-day mortality and 90-day mortality were higher among patients undergoing surgical resection versus those receiving SBRT (1.7% vs 0.3%, P < .001; 2.8% vs 1.7%, P < .001). In propensity score-matched patients, OS favored SBRT for the first several months, but this was reversed before 1 year and significantly favored surgical management in the long term (5-year OS, 71.0% vs 41.8%; P < .001). The propensity score-matched analysis was repeated to include only SBRT patients who had documented refusal of a recommended surgery, which again demonstrated superior 5-year OS with surgical management (71.4% vs 55.9%; P < .001). CONCLUSIONS SBRT is being increasingly used to treat early-stage lung cancer in low-comorbidity patients. However, for patients who may be candidates for either treatment, the long-term OS favors surgical management.
Collapse
Affiliation(s)
- Brooks V Udelsman
- Division of Thoracic Surgery, Department of Surgery, University of Southern California, Los Angeles, Calif.
| | - Maureen E Canavan
- Department of Internal Medicine, Cancer Outcomes Public Policy and Effectiveness Research Center, Yale University School of Medicine, New Haven, Conn
| | - Peter L Zhan
- Division of Thoracic Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Conn
| | - Sora Ely
- Division of Thoracic Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Conn
| | - Henry S Park
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Conn
| | - Daniel J Boffa
- Division of Thoracic Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Conn
| | - Vincent J Mase
- Division of Thoracic Surgery, Department of Surgery, Yale University School of Medicine, New Haven, Conn
| |
Collapse
|
6
|
Zhao Q, Wang J, Fu Y, Hu B. Radiofrequency ablation for stage <IIB non-small cell lung cancer: Opportunities, challenges, and the road ahead. Thorac Cancer 2023; 14:3181-3190. [PMID: 37740563 PMCID: PMC10643797 DOI: 10.1111/1759-7714.15114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/24/2023] Open
Abstract
Pulmonary carcinoma represents the second common cancer for human race while its mortality rate ranked the first all over the world. Surgery remains the primary option for early-stage non-small cell lung cancer (NSCLC) in some surgical traditions. Nevertheless, only less than half of patients are operable subjected to the limited lung function and multiple primary/metastatic lesions. Recent improvements in minimally invasive surgical techniques have made the procedure accessible to more patients, but this percentage still does not exceed half. In recent years, radiofrequency ablation (RFA), one of the thermal ablation procedures, has gradually advanced in the treatment of lung cancer in addition to being utilized to treat breast and liver cancer. Several guidelines, including the American College of Chest Physicians (ACCP), include RFA as an option for some patients with NSCLC although the level of evidence is mostly limited to retrospective studies. In this review, we emphasize the use of the RFA technique in patients with early-stage NSCLC and provide an overview of the RFA indication population, prognosis status, and complications. Meanwhile, the advantages and disadvantages of RFA proposed in existing studies are compared with surgical treatment and radiotherapy. Due to the high rate of gene mutation and immunocompetence in NSCLC, there are considerable challenges to clinical translation of combining targeted drugs or immunotherapy with RFA that the field has only recently begun to fully appreciate.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Thoracic Surgery, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Jing Wang
- Department of Thoracic Surgery, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Yi‐li Fu
- Department of Thoracic Surgery, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Chaoyang HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
7
|
Shah IA, Seol HY, Cho Y, Ji W, Seo J, Lee C, Chon MK, Shin D, Kim JH, Choo KS, Park J, Kim J, Yoo H, Kim JH. Conversion of the bronchial tree into a conforming electrode to ablate the lung nodule in a porcine model. COMMUNICATIONS MEDICINE 2023; 3:129. [PMID: 37775526 PMCID: PMC10541426 DOI: 10.1038/s43856-023-00362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/15/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Radiofrequency ablation (RFA) is one of the treatment options for lung nodules. However, the need for exact delivery of the rigid metal electrode into the center of the target mass often leads to complications or suboptimal results. To overcome these limitations, a concept of conforming electrodes using a flexible material has been tested in this study. METHODS A bronchoscopy-guided RFA (CAROL) under a temperature-controlled mode was tested in in-vivo and ex-vivo porcine lungs. Gallium-based liquid metal was used for turning the bronchial tree into temporary RF electrodes. A customized bronchoscopy-guided balloon-tipped guiding catheter (CAROL catheter) was used to make the procedure feasible under fluoroscopy imaging guidance. The computer simulation was also performed to gain further insight into the ablation results. Safety was also assessed including the liquid metal remaining in the body. RESULTS The bronchial electrode injected from the CAROL catheter was able to turn the target site bronchial air pipe into a temporally multi-tined RF electrode. The mean volume of Gallium for each effective CAROL was 0.46 ± 0.47 ml. The ablation results showed highly efficacious and consistent results, especially in the peripheral lung. Most bronchial electrodes were also retrieved by either bronchoscopic suction immediately after the procedure or by natural expectoration thereafter. The liquid metal used in these experiments did not have any significant safety issues. Computer simulation also supports these results. CONCLUSION The CAROL ablation was very effective and safe in porcine lungs showing encouraging potential to overcome the conventional approaches.
Collapse
Affiliation(s)
- Izaz Ali Shah
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hee Yun Seol
- Department of Internal Medicine, School of Medicine, Pusan National University, Pusan National University Yangsan Hospital, Research Institute for Convergence of Biomedical Science and Technology, Yangsan, Republic of Korea
| | - Youngdae Cho
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Wonjun Ji
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jaeyoung Seo
- Department of R&D Center, Tau Medical Inc, Busan, Republic of Korea
| | - Cheolmin Lee
- Department of R&D Center, Tau Medical Inc, Busan, Republic of Korea
| | - Min-Ku Chon
- Department of Cardiology, School of Medicine & Cardiovascular center, Pusan National University & Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Donghoon Shin
- Department of Pathology, School of Medicine, Pusan National University & Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Justin H Kim
- Department of R&D Center, Tau Medical Inc, Busan, Republic of Korea
| | - Ki-Seok Choo
- Department of Radiology, School of Medicine & Medical Research Institute, Pusan National University & Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Junhui Park
- Major of Human Bioconvergence, College of Information Technology and Convergence, Pukyong National University, Busan, Republic of Korea
| | - Juhyung Kim
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Hyoungsuk Yoo
- Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - June-Hong Kim
- Department of Cardiology, School of Medicine & Cardiovascular center, Pusan National University & Pusan National University Yangsan Hospital, Yangsan, Republic of Korea.
| |
Collapse
|
8
|
Bartlett EC, Rahman S, Ridge CA. Percutaneous image-guided thermal ablation of lung cancer: What is the evidence? Lung Cancer 2023; 176:14-23. [PMID: 36571982 DOI: 10.1016/j.lungcan.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Thermal ablation techniques have now been used for more than twenty years in the treatment of primary lung tumours, predominantly non-small cell lung cancer (NSCLC). Although primarily used for the treatment of early-stage disease in non-surgical patients, thermal ablation is now also being used in selected patients with oligometastatic and oligoprogressive disease. This review discusses the techniques available for thermal ablation, the evidence for use of thermal ablation in primary lung tumours in early- and advanced-stage disease and compares thermal ablation to alternative treatment strategies.
Collapse
Affiliation(s)
- E C Bartlett
- Royal Brompton Hospital (Guy's and St Thomas' NHS Foundation Trust), Department of Radiology, Sydney Street, London SW3 6NP, United Kingdom.
| | - S Rahman
- Royal Brompton Hospital (Guy's and St Thomas' NHS Foundation Trust), Department of Radiology, Sydney Street, London SW3 6NP, United Kingdom
| | - C A Ridge
- Royal Brompton Hospital (Guy's and St Thomas' NHS Foundation Trust), Department of Radiology, Sydney Street, London SW3 6NP, United Kingdom; National Heart and Lung Institute, Imperial College, London SW3 6LY, United Kingdom
| |
Collapse
|
9
|
Ye X, Fan W, Wang Z, Wang J, Wang H, Niu L, Fang Y, Gu S, Liu L, Liu B, Zhuang Y, Wei Z, Li X, Li X, Li Y, Li C, Yang X, Yang W, Yang P, Lin Z, Meng Z, Hu K, Liu C, Huang Y, Huang G, Huang K, Peng Z, Han Y, Jin Y, Lei G, Zhai B, Li H, Pan J, Filippiadis D, Kelekis A, Pua U, Futacsi B, Yumchinserchin N, Iezzi R, Tang A, Roy SH. Clinical practice guidelines on image-guided thermal ablation of primary and metastatic lung tumors (2022 edition). J Cancer Res Ther 2022; 18:1213-1230. [PMID: 36204866 DOI: 10.4103/jcrt.jcrt_880_22] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The main contents of the Clinical Practice Guidelines on Image-Guided Thermal Ablation (IGTA) of Primary and Metastatic Lung Tumors (2022 Edition) include the following: epidemiology of primary and metastatic lung tumors; the concepts of the IGTA and common technical features; procedures, indications, contraindications, outcomes evaluation, and related complications of IGTA on primary and metastatic lung tumors; and limitations and future development.
Collapse
Affiliation(s)
- Xin Ye
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong, China
| | - Weijun Fan
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, China
| | - Zhongmin Wang
- Department of Interventional Radiology, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Minhang, Shanghai, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Haidian, Beijing, China
| | - Hui Wang
- Interventional Center, Jilin Provincial Cancer Hospital, Changchun, Jilin, China
| | - Lizhi Niu
- Department of Oncology, Affiliated Fuda Cancer Hospital, Jinan University, China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shanzhi Gu
- Department of Interventional Radiology, Hunan Cancer Hospital, Hunan, China
| | - Lingxiao Liu
- Department of Interventional Radiology, Zhongshan Hospital, Shanghai Medical College of Fudan University, Xuhui, Shanghai, China
| | - Baodong Liu
- Department of Thoracic Surgery, Xuan Wu Hospital Affiliated to Capital Medical University, Xicheng, Beijing, China
| | - Yiping Zhuang
- Department of Interventional Therapy, Jiangsu Cancer Hospital, Jiangsu, China
| | - Zhigang Wei
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, Shandong, China
| | - Xiao Li
- Department of Interventional Therapy, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Xiaoguang Li
- Minimally Invasive Tumor Therapies Center, Beijing Hospital, Dongcheng, Beijing, China
| | - Yuliang Li
- Department of Interventional Medicine, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Chunhai Li
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xia Yang
- Department of Oncology, Shandong Provincial Hospital Afliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wuwei Yang
- Department of Oncology, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Po Yang
- Interventionael and Vascular Surgery, The Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhengyu Lin
- Department of Intervention, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhiqiang Meng
- Minimally Invasive Therapy Center, Fudan University Shanghai Cancer Center, Dongan, Shanghai, China
| | - Kaiwen Hu
- Department of Oncology, Dongfang Hospital Affiliated to Beijing University of Chinese Medicine, Chaoyang, China
| | - Chen Liu
- Department of Interventional Therapy, Beijing Cancer Hospital, Haidian, Beijing, China
| | - Yong Huang
- Department of Imaging, Affiliated Cancer Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Guanghui Huang
- Department of Oncology, Shandong Provincial Hospital Afliated to Shandong First Medical University, Jinan, Shandong, China
| | - Kaiwen Huang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Da'an District, Taipei, China
| | - Zhongmin Peng
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yue Han
- Department of Interventional Therapy, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Yong Jin
- Interventionnal Therapy Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guangyan Lei
- Department of Thoracic Surgery, Shanxi Provincial Cancer Hospital, Xinghualing, Taiyuan, China
| | - Bo Zhai
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Minhang, Shanghai, China
| | - Hailiang Li
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jie Pan
- Department of Radiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Dongcheng, Beijing, China
| | - Dimitris Filippiadis
- 2nd Department of Radiology, Division of Interventional Radiology, Medical School, Attikon University General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexis Kelekis
- Radiology and Interventional Radiology at National and Kapodistrian University of Athens, Athens, Greece
| | - Uei Pua
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Balazs Futacsi
- Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - N Yumchinserchin
- The Intervention Radiology Department at Mongolia's National Cancer Center, Mongolia
| | - Roberto Iezzi
- Interventional Radiology Consultant at Fondazione Policlinico A. Gemelli IRCCS, Rome, Lazio, Italia
| | - Alex Tang
- Vascular and Interventional Radiology Centre, Subang Jaya Medical Centre, Subang Jaya, Selangor, Malaysia
| | - Shuvro H Roy
- Choudhury Consultant in Diagnostic and Interventional Radiology, Naryana Health Group, India
| |
Collapse
|
10
|
Folch E, Guo Y, Senitko M. Therapeutic Bronchoscopy for Lung Nodules: Where Are We Now? Semin Respir Crit Care Med 2022; 43:480-491. [PMID: 36104025 DOI: 10.1055/s-0042-1749368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Lobar resection has been the established standard of care for peripheral early-stage non-small cell lung cancer (NSCLC). Over the last few years, surgical lung sparing approach (sublobar resection [SLR]) has been compared with lobar resection in T1N0 NSCLC. Three nonsurgical options are available in those patients who have a prohibitive surgical risk, and those who refuse surgery: stereotactic body radiotherapy (SBRT), percutaneous ablation, and bronchoscopic ablation. Local ablation involves placement of a probe into a tumor, and subsequent application of either heat or cold energy, pulsing electrical fields, or placement of radioactive source under an image guidance to create a zone of cell death that encompasses the targeted lesion and an ablation margin. Despite being in their infancy, the bronchoscopic ablative techniques are undergoing rapid research, as they extrapolate a significant knowledge-base from the percutaneous techniques that have been in the radiologist's armamentarium since 2000. Here, we discuss selected endoscopic and percutaneous thermal and non-thermal therapies with the focus on their efficacy and safety.
Collapse
Affiliation(s)
- Erik Folch
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yanglin Guo
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Michal Senitko
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Mississippi Medical Center, Jackson, Mississippi.,Division of Cardiothoracic Surgery, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
11
|
Chen D, Zhao M, Xiang X, Liang J. Percutaneous local tumor ablation vs. stereotactic body radiotherapy for early-stage non-small cell lung cancer: a systematic review and meta-analysis. Chin Med J (Engl) 2022; 135:00029330-990000000-00031. [PMID: 35830244 PMCID: PMC9532043 DOI: 10.1097/cm9.0000000000002131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Percutaneous local tumor ablation (LTA) and stereotactic body radiotherapy (SBRT) have been regarded as viable treatments for early-stage lung cancer patients. The purpose of this study was to compare the efficacy and safety of LTA with SBRT for early-stage non-small cell lung cancer (NSCLC). METHODS PubMed, Embase, Cochrane library, Ovid, Google scholar, CNKI, and CBMdisc were searched to identify potential eligible studies comparing the efficacy and safety of LTA with SBRT for early-stage NSCLC published between January 1, 1991, and May 31, 2021. Hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were applied to estimate the effect size for overall survival (OS), progression-free survival (PFS), locoregional progression (LP), and adverse events. RESULTS Five studies with 22,231 patients were enrolled, including 1443 patients in the LTA group and 20,788 patients in the SBRT group. The results showed that SBRT was not superior to LTA for OS (HR = 1.03, 95% CI: 0.87-1.22, P = 0.71). Similar results were observed for PFS (HR = 1.09, 95% CI: 0.71-1.67, P = 0.71) and LP (HR = 0.66, 95% CI: 0.25-1.77, P = 0.70). Subgroup analysis showed that the pooled HR for OS favored SBRT in patients with tumors sized >2 cm (HR = 1.32, 95% CI: 1.14-1.53, P = 0.0003), whereas there was no significant difference in patients with tumors sized ≤2 cm (HR = 0.93, 95% CI: 0.64-1.35, P = 0.70). Moreover, no significant differences were observed for the incidence of severe adverse events (≥grade 3) (OR = 1.95, 95% CI: 0.63-6.07, P = 0.25) between the LTA group and SBRT group. CONCLUSIONS Compared with SBRT, LTA appears to have similar OS, PFS, and LP. However, for tumors >2 cm, SBRT is superior to LTA in OS. Prospective randomized controlled trials are required to determine such findings. INPLASY REGISTRATION NUMBER INPLASY202160099.
Collapse
Affiliation(s)
- Dongjie Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518172, China
| | - Man Zhao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518172, China
| | - Xiaoyong Xiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518172, China
| | - Jun Liang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518172, China
| |
Collapse
|
12
|
Park HS, Detterbeck FC, Madoff DC, Bade BC, Kumbasar U, Mase VJ, Li AX, Blasberg JD, Woodard GA, Brandt WS, Decker RH. A guide for managing patients with stage I NSCLC: deciding between lobectomy, segmentectomy, wedge, SBRT and ablation-part 4: systematic review of evidence involving SBRT and ablation. J Thorac Dis 2022; 14:2412-2436. [PMID: 35813762 PMCID: PMC9264060 DOI: 10.21037/jtd-21-1826] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/09/2022] [Indexed: 11/06/2022]
Abstract
Background Clinical decision-making for patients with stage I lung cancer is complex. It involves multiple options [lobectomy, segmentectomy, wedge, stereotactic body radiotherapy (SBRT), thermal ablation], weighing multiple outcomes (e.g., short-, intermediate-, long-term) and multiple aspects of each (e.g., magnitude of a difference, the degree of confidence in the evidence, and the applicability to the patient and setting at hand). A structure is needed to summarize the relevant evidence for an individual patient and to identify which outcomes have the greatest impact on the decision-making. Methods A PubMed systematic review from 2000-2021 of outcomes after SBRT or thermal ablation vs. resection is the focus of this paper. Evidence was abstracted from randomized trials and non-randomized comparisons with at least some adjustment for confounders. The analysis involved careful assessment, including characteristics of patients, settings, residual confounding etc. to expose degrees of uncertainty and applicability to individual patients. Evidence is summarized that provides an at-a-glance overall impression as well as the ability to delve into layers of details of the patients, settings and treatments involved. Results Short-term outcomes are meaningfully better after SBRT than resection. SBRT doesn't affect quality-of-life (QOL), on average pulmonary function is not altered, but a minority of patients may experience gradual late toxicity. Adjusted non-randomized comparisons demonstrate a clinically relevant detriment in long-term outcomes after SBRT vs. surgery. The short-term benefits of SBRT over surgery are accentuated with increasing age and compromised patients, but the long-term detriment remains. Ablation is associated with a higher rate of complications than SBRT, but there is little intermediate-term impact on quality-of-life or pulmonary function tests. Adjusted comparisons show a meaningful detriment in long-term outcomes after ablation vs. surgery; there is less difference between ablation and SBRT. Conclusions A systematic, comprehensive summary of evidence regarding Stereotactic Body Radiotherapy or thermal ablation vs. resection with attention to aspects of applicability, uncertainty and effect modifiers provides a foundation for a framework for individualized decision-making.
Collapse
Affiliation(s)
- Henry S. Park
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Frank C. Detterbeck
- Department of Thoracic Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - David C. Madoff
- Department of Radiology & Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Brett C. Bade
- Department of Pulmonary Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ulas Kumbasar
- Department of Thoracic Surgery, Hacettepe University School of Medicine, Ankara, Turkey
| | - Vincent J. Mase
- Department of Thoracic Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew X. Li
- Department of General Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Justin D. Blasberg
- Department of Thoracic Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Gavitt A. Woodard
- Department of Thoracic Surgery, Yale University School of Medicine, New Haven, CT, USA
| | - Whitney S. Brandt
- Department of Cardiothoracic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Roy H. Decker
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Update on Image-Guided Thermal Lung Ablation: Society Guidelines, Therapeutic Alternatives, and Postablation Imaging Findings. AJR Am J Roentgenol 2022; 219:471-485. [PMID: 35319908 DOI: 10.2214/ajr.21.27099] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Percutaneous image-guided thermal ablation (IGTA) has been endorsed by multiple societies as a safe and effective lung-preserving treatment for primary lung cancer and metastases involving the lung and chest wall. This article reviews the role of IGTA in the care continuum of patients with thoracic neoplasms and discusses strategies to identify the optimal local therapy considering patient and tumor characteristics. The advantages and disadvantages of percutaneous thermal ablation compared to surgical resection and stereotactic body radiotherapy are summarized. Principles of radiofrequency ablation, microwave ablation, and cryoablation, as well as the emerging use of transbronchial thermal ablation, are described. Specific considerations are presented regarding the role of thermal ablation for early-stage non-small cell lung cancer (NSCLC), multifocal primary NSCLC, pulmonary metastases, salvage of recurrent NSCLC after surgery or radiation, and pain palliation for tumors involving the chest wall. Recent changes to professional society guidelines regarding the role of thermal ablation in the lung, including for treatment of oligometastatic disease, are highlighted. Finally, recommendations are provided for imaging follow-up after thermal ablation of lung tumors, accompanied by examples of expected postoperative findings and patterns of disease recurrence.
Collapse
|
14
|
Cilleruelo-Ramos A, Cladellas-Gutiérrez E, de la Pinta C, Quintana-Cortés L, Sosa-Fajardo P, Couñago F, Mielgo-Rubio X, Trujillo-Reyes JC. Advances and controversies in the management of early stage non-small cell lung cancer. World J Clin Oncol 2021; 12:1089-1100. [PMID: 35070733 PMCID: PMC8716990 DOI: 10.5306/wjco.v12.i12.1089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/20/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Complete resection continues to be the gold standard for the treatment of early-stage lung cancer. The landmark Lung Cancer Study Group trial in 1995 established lobectomy as the minimum intervention necessary for the management of early-stage non-small cell lung cancer, as it was associated with lower recurrence and metastasis rates than sublobar resection and lower postoperative morbidity and mortality than pneumonectomy. There is a growing tendency to perform sublobar resection in selected cases, as, depending on factors such as tumor size, histologic subtype, lymph node involvement, and resection margins, it can produce similar oncological results to lobectomy. Alternative treatments such as stereotactic body radiotherapy and radiofrequency ablation can also produce good outcomes in inoperable patients or patients who refuse surgery.
Collapse
Affiliation(s)
- Angel Cilleruelo-Ramos
- Department of Thoracic Surgery, Clinic Universitary Hospital, Valladolid 47005, Spain
- Department of Surgery, Universidad de Valladolid, Valladolid 47001, Spain
| | | | - Carolina de la Pinta
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid 28034, Spain
| | - Laura Quintana-Cortés
- Department of Medical Oncology, Hospital Don Benito-Villanueva, Badajoz 06400, Spain
| | - Paloma Sosa-Fajardo
- Department of Radiation Therapy, Complejo Hospitalario Universitario, Santiago de Compostela, La Coruña 15706, Spain
| | - Felipe Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud Madrid, Madrid 28223, Spain
- Department of Radiation Oncology, Hospital La Luz, Madrid 28223, Spain
- Department of Medicine, School of Biomedical Sciences, Universidad Europea, Madrid 28223, Spain
| | - Xabier Mielgo-Rubio
- Department of Medical Oncology Unit, Hospital Universitario Fundación Alcorcón, Madrid 28922, Spain
| | - Juan Carlos Trujillo-Reyes
- Department of Thoracic Surgery, Hospital de la Santa Creu i Sant Pau, Barcelona 08029, Spain
- Department of Surgery, Universitat Autónoma, Barcelona 08029, Spain
| |
Collapse
|
15
|
Yan P, Lyu X, Wang S, Dong S, Zhu Z, Cheng B, Sun Y, Jiang Q, Liu J, Li F. Insufficient ablation promotes the metastasis of residual non-small cell lung cancer (NSCLC) cells via upregulating carboxypeptidase A4. Int J Hyperthermia 2021; 38:1037-1051. [PMID: 34233564 DOI: 10.1080/02656736.2021.1947530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Thermal ablation is a potentially curative therapy for early-stage non-small cell lung cancer (NSCLC). Early recurrence after thermal ablation necessitates our attention. METHODS The invasion and migration abilities of NSCLC after sublethal heat stimulus were observed in vitro and in vivo. Sublethal thermal stimulus molecular changes were identified by RNA sequencing. A xenograft model of NSCLC with insufficient ablation was established to explore the epithelial-to-mesenchymal transition (EMT) and metastasis-related phenotypes alteration of residual tumors. RESULTS In vitro, the invasion and migration abilities of NSCLC cells were enhanced 72 h after 44 °C and 46 °C thermal stimulus. Epithelial-mesenchymal transition (EMT) phenotypes were also upregulated under these conditions. RNA sequencing revealed that the expression of carboxypeptidase A4 (CPA4) was significantly upregulated after thermal stimulus. Significant upregulation of CPA4 and EMT phenotypes was also found in the xenograft model of insufficient NSCLC ablation. The EMT process and invasion and migration abilities can be reversed by silencing CPA4. CONCLUSIONS This study demonstrates that sublethal heat stimulus caused by insufficient ablation can promote EMT and enhance the metastatic capacity of NSCLC. CPA4 plays an important role in these biological processes. Inhibition of CPA4 might be of great significance for improving early-stage NSCLC survival after ablation.
Collapse
Affiliation(s)
- Peng Yan
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoli Lyu
- Soochow University Medical College, Suzhou, China.,Radiation and Damage Monitoring Laboratory, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Sinian Wang
- Radiation and Damage Monitoring Laboratory, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Suhe Dong
- Radiation and Damage Monitoring Laboratory, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Zheng Zhu
- Radiation and Damage Monitoring Laboratory, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Bo Cheng
- Department of Pathology, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yuping Sun
- Proton Center, Shandong Cancer Hospital and Institute, Jinan, China
| | - Qisheng Jiang
- Soochow University Medical College, Suzhou, China.,Radiation and Damage Monitoring Laboratory, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Jie Liu
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengsheng Li
- Soochow University Medical College, Suzhou, China.,Radiation and Damage Monitoring Laboratory, PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
16
|
Genshaft SJ, Suh RD, Abtin F, Baerlocher MO, Chang AJ, Dariushnia SR, Devane AM, Faintuch S, Himes EA, Lisberg A, Padia S, Patel S, Tam AL, Yanagawa J. Society of Interventional Radiology Multidisciplinary Position Statement on Percutaneous Ablation of Non-small Cell Lung Cancer and Metastatic Disease to the Lungs: Endorsed by the Canadian Association for Interventional Radiology, the Cardiovascular and Interventional Radiological Society of Europe, and the Society of Interventional Oncology. J Vasc Interv Radiol 2021; 32:1241.e1-1241.e12. [PMID: 34332724 DOI: 10.1016/j.jvir.2021.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To state the Society of Interventional Radiology's position on the use of image-guided thermal ablation for the treatment of early stage non-small cell lung cancer, recurrent lung cancer, and metastatic disease to the lung. MATERIALS AND METHODS A multidisciplinary writing group, with expertise in treating lung cancer, conducted a comprehensive literature search to identify studies on the topic of interest. Recommendations were drafted and graded according to the updated SIR evidence grading system. A modified Delphi technique was used to achieve consensus agreement on the recommendation statements. RESULTS A total of 63 studies, including existing systematic reviews and meta-analysis, retrospective cohort studies, and single-arm trials were identified. The expert writing group developed and agreed on 7 recommendations on the use of image-guided thermal ablation in the lung. CONCLUSION SIR considers image-guided thermal ablation to be an acceptable treatment option for patients with inoperable Stage I NSCLC, those with recurrent NSCLC, as well as patients with metastatic lung disease.
Collapse
Affiliation(s)
- Scott J Genshaft
- Department of Radiologic Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA.
| | - Robert D Suh
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Fereidoun Abtin
- Department of Radiology, Thoracic and Interventional Section, David Geffen School of Medicine, University of California, Los Angeles, CA
| | | | - Albert J Chang
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Sean R Dariushnia
- Department of Radiology and Imaging Sciences, Division of Interventional Radiology and Image-Guided Medicine, Emory University School of Medicine, Atlanta, GA
| | - A Michael Devane
- Department of Radiology, Prisma Health, University of South Carolina School of Medicine Greenville, Greenville, SC
| | - Salomao Faintuch
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | | | - Aaron Lisberg
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Siddharth Padia
- Department of Radiology, Section of Interventional Radiology, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Sheena Patel
- Society of Interventional Radiology, Fairfax, VA
| | - Alda L Tam
- Department of Interventional Radiology, MD Anderson Cancer Center, Houston, TX
| | - Jane Yanagawa
- Division of Thoracic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA
| |
Collapse
|
17
|
Xu S, Qi J, Li B, Li XG. Survival prediction for non-small cell lung cancer patients treated with CT-guided microwave ablation: development of a prognostic nomogram. Int J Hyperthermia 2021; 38:640-649. [PMID: 33882774 DOI: 10.1080/02656736.2021.1914353] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES To explore the outcomes of CT-guided percutaneous microwave ablation (MWA) in non-small cell lung cancer (NSCLC) patients, and then develop an effective nomogram to predict the survival. METHODS NSCLC patients treated with MWA were randomly allocated to either the training cohort or the validation cohort (3:1). The primary outcome measurement was overall survival (OS), whose predictors were identified by univariate and multivariate analyses in the training cohort. Then, a predictive nomogram was developed to predict the OS, with the predictive accuracy evaluated by C-statistic and receiver operating characteristic in both the training and validation cohorts. RESULTS A total of 234 patients (training cohort: n = 176; validation cohort: n = 58) and 271 tumors with a median OS of 17.0 ± 12.2 months were included. The predictors selected into the nomogram included tumor diameter (hazard ratio [HR], 2.12; 95% confidence interval [CI], 1.37-3.30; p < 0.001), extrapulmonary metastases (HR, 1.77; 95% CI, 1.06-2.95; p = 0.030), tumor stage (HR, 1.38; 95% CI, 1.07-1.79; p = 0.013), tumor type (HR, 2.00; 95% CI, 1.48-2.72; p < 0.001) and post-MWA TKIs (HR, 0.55; 95% CI, 0.34-0.89; p < 0.001), based on the results of univariate and multivariate analyses. The C-statistic showed good predictive performance, with a C-statistic of 0.838 (95% CI, 0.779-0.897) internally and 0.808 (95% CI, 0.695-0.920) externally (training cohort and validation cohort, respectively). CONCLUSIONS The nomogram was effective in predicting the OS in NSCLC patients treated with MWA, and could be applied to identify patients who may benefit most from MWA and be helpful for clinical decision making.
Collapse
Affiliation(s)
- Sheng Xu
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Qi
- School of Medicine, Nankai University, Tianjin, China
| | - Bin Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Guang Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Rangamuwa K, Leong T, Weeden C, Asselin-Labat ML, Bozinovski S, Christie M, John T, Antippa P, Irving L, Steinfort D. Thermal ablation in non-small cell lung cancer: a review of treatment modalities and the evidence for combination with immune checkpoint inhibitors. Transl Lung Cancer Res 2021; 10:2842-2857. [PMID: 34295682 PMCID: PMC8264311 DOI: 10.21037/tlcr-20-1075] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, with approximately 1.6 million cancer related deaths each year. Prognosis is best in patients with early stage disease, though even then five-year survival is only 55% in some groups. Median survival for advanced non-small cell lung cancer (NSCLC) is 8–12 months with conventional treatment. Immune checkpoint inhibitor (ICI) therapy has revolutionised the treatment of NSCLC with significant long-term improvements in survival demonstrated in some patients with advanced NSCLC. However, only a small proportion of patients respond to ICI, suggesting the need for further techniques to harness the potential of ICI therapy. Thermal ablation utilizes the extremes of temperature to cause tumour destruction. Commonly used modalities are radiofrequency ablation (RFA), cryoablation and microwave ablation (MWA). At present thermal ablation is reserved for curative-intent therapy in patients with localized NSCLC who are unable to undergo surgical resection or stereotactic ablative body radiotherapy (SABR). Limited evidence suggests that thermal ablative modalities can upregulate an anticancer immune response in NSCLC. It is postulated that thermal ablation can increase tumour antigen release, which would initiate and upregulated steps in the cancer immunity cycle required to elicit an anticancer immune response. This article will review the current thermal ablative techniques and their ability to modulate an anti-cancer immune response with a view of using thermal ablation in conjunction with ICI therapy.
Collapse
Affiliation(s)
- Kanishka Rangamuwa
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| | - Tracy Leong
- Department of Respiratory Medicine, Austin Hospital, Heidelberg, Victoria, Australia
| | - Clare Weeden
- Personalised Oncology Division, Walter Eliza Hall institute, Melbourne, Australia
| | | | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Michael Christie
- Department of Pathology, Royal Melbourne Hospital, Melbourne, Australia
| | - Tom John
- Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Phillip Antippa
- Department of Thoracic Surgery, Royal Melbourne Hospital, Melbourne, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Department of Medicine (RMH), University of Melbourne, Parkville, Australia
| |
Collapse
|
19
|
Genshaft SJ, Suh RD, Abtin F, Baerlocher MO, Dariushnia SR, Devane AM, Himes E, Lisberg A, Padia S, Patel S, Yanagawa J. Society of Interventional Radiology Quality Improvement Standards on Percutaneous Ablation of Non-Small Cell Lung Cancer and Metastatic Disease to the Lungs. J Vasc Interv Radiol 2021; 32:1242.e1-1242.e10. [PMID: 34000388 DOI: 10.1016/j.jvir.2021.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To provide guidance on quality improvement thresholds for outcomes and complications of image-guided thermal ablation for the treatment of early stage non-small cell lung cancer, recurrent lung cancer, and metastatic disease. MATERIALS AND METHODS A multidisciplinary writing group conducted a comprehensive literature search to identify studies on the topic of interest. Data were extracted from relevant studies and thresholds were derived from a calculation of 2 standard deviations from the weighted mean of each outcome. A modified Delphi technique was used to achieve consensus agreement on the thresholds. RESULTS Data from 29 studies, including systematic reviews and meta-analyses, retrospective cohort studies, and single-arm trials were extracted for calculation of the thresholds. The expert writing group agreed on thresholds for local control, overall survival and adverse events associated with image-guided thermal ablation. CONCLUSION SIR recommends utilizing the indicator thresholds to review and assess the efficacy of ongoing quality improvement programs. When performance falls above or below specific thresholds, consideration of a review of policies and procedures to assess for potential causes, and to implement changes in practices, may be warranted.
Collapse
Affiliation(s)
- Scott J Genshaft
- Department of Radiologic Sciences, David Geffen School of Medicine at University of California, Los Angeles, California.
| | - Robert D Suh
- Department of Radiology, David Geffen School of Medicine at University of California, Los Angeles, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Fereidoun Abtin
- Department of Radiology, Thoracic and Interventional Section, David Geffen School of Medicine at University of California, Los Angeles
| | | | - Sean R Dariushnia
- Department of Radiology and Imaging Sciences, Division of Interventional Radiology and Image-Guided Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - A Michael Devane
- Department of Radiology, Prisma Health, University of South Carolina School of Medicine Greenville, Greenville, South Carolina
| | | | - Aaron Lisberg
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Siddharth Padia
- Department of Radiology, Section of Interventional Radiology, David Geffen School of Medicine at University of California, Los Angeles, California
| | - Sheena Patel
- Society of Interventional Radiology, Fairfax, Virginia
| | - Jane Yanagawa
- Division of Thoracic Surgery, David Geffen School of Medicine at University of California, Los Angeles, California
| |
Collapse
|
20
|
Palussière J, Cazayus M, Cousin S, Cabart M, Chomy F, Catena V, Buy X. Is There a Role for Percutaneous Ablation for Early Stage Lung Cancer? What Is the Evidence? Curr Oncol Rep 2021; 23:81. [PMID: 33948744 DOI: 10.1007/s11912-021-01072-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE OF REVIEW For patients with early stage non-small-cell lung cancer (NSCLC), thermal ablation (TA) has become in the least two decades an option of treatment used worldwide for patients with comorbidities who are not surgical candidates. Here, we review data published with different TA techniques: radiofrequency ablation (RFA), microwave ablation (MWA) and cryoablation. This paper reviews also the comparison that has been made between TA and stereotactic radiotherapy (SBRT). RECENT FINDINGS A majority of retrospective studies, the absence of comparative studies, and the variety of techniques make difficult to get evident data. Nevertheless, these stand-alone techniques have demonstrated local efficacy for tumors less than 3 cm and good tolerance on fragile patients. Many recent reviews and database analyses show that outcomes after TA (mainly RFA and MWA) are comparable to SBRT in terms of survival rates. For patients who are unfit for surgery, TA has demonstrated interesting results for safety, benefits in overall survival, and acceptable local control.
Collapse
Affiliation(s)
- J Palussière
- Imaging Department, Institut Bergonié, 229 cours de l'Argonne, 33076, Bordeaux, France.
| | - M Cazayus
- Imaging Department, Institut Bergonié, 229 cours de l'Argonne, 33076, Bordeaux, France
| | - S Cousin
- Oncology Department, Institut Bergonié, Bordeaux, France
| | - M Cabart
- Oncology Department, Institut Bergonié, Bordeaux, France
| | - F Chomy
- Oncology Department, Institut Bergonié, Bordeaux, France
| | - V Catena
- Imaging Department, Institut Bergonié, 229 cours de l'Argonne, 33076, Bordeaux, France
| | - X Buy
- Imaging Department, Institut Bergonié, 229 cours de l'Argonne, 33076, Bordeaux, France
| |
Collapse
|
21
|
Li M, Xu X, Qin Y, Zhang P, Shen C, Xia Q, Fan L. Radiofrequency ablation vs. stereotactic body radiotherapy for stage IA non-small cell lung cancer in nonsurgical patients. J Cancer 2021; 12:3057-3066. [PMID: 33854605 PMCID: PMC8040894 DOI: 10.7150/jca.51413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/27/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Approximately 20% resectable non-small cell lung cancer (NSCLC) patients are treated non-surgically due to various reasons. The aim of the present study was to compare the effectiveness of radiofrequency ablation (RFA) and stereotactic body radiotherapy (SBRT) in patients with stage IA NSCLC who were ineligible for surgery using the surveillance, epidemiology and end-results (SEER) Database. Methods: Using the SEER registry, we identified a total of 6,195 IA NSCLC patients who received SBRT or RFA between 2004 and 2015 because of ineligibility for surgical resection due to various reasons. Complete clinical information was available in all these patients. Overall survival (OS) and cancer-specific survival (CSS) were compared between RFA and SBRT groups by using propensity score matching (PSM), inverse probability of treatment weight (IPTW), and overlap weighting analysis. Additionally, an exploratory analysis was conducted to determine the effectiveness of RFA treatment based on the subsets of clinically relevant patients. Results: Of the 6,195 nonsurgical IA NSCLC patients, 191 patients (3.1%) received RFA and the other 6,004 patients (96.9%) received SBRT. The one-, three- and five-year OS in the unmatched RFA and SBRT groups were 83.3%, 48.5%and 29.1% vs. 83.8%, 48.3% and 27.4%, respectively, there was similar results in the PSM, IPTW, overlap weighing analysis. Nonsurgical IA NSCLC patients receiving RFA seemed to have better five-year survival than those receiving SBRT, though the difference was not statistically significant (OS, HR; 0.986; 95% CI, 0.827-1.175, P=0.8738; CSS, HR; 0.965; 95% CI, 0.765-1.219, P=0.7663). We found that the odds of receiving RFA decreased with larger tumor size (>2, <3 cm, OR; 0.303; 95% CI, 0.191-0.479; >3 cm, OR; 0.153; 95% CI, 0.093-0.251) compared with tumor size <1 cm. In subgroup analysis, patients receiving RFA seemed to have better OS than those receiving SBRT, though the difference was not statistically significant. This specific trend was even more obvious in patients with tumors <1cm in diameter (P=0.1577). Conclusion: In comparison with SBRT, RFA did not seem to adversely affect CSS and OS of IA NSCLC patients who were not suitable for surgical treatment. In addition, RFA seemed to offer better survival to IA NSCLC patients, especially those with tumors <1 cm.
Collapse
Affiliation(s)
- Ming Li
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao Xu
- Shanghai Clinical College, Anhui Medical University, Hefei 230032, Anhui Province, China
| | - Yingyi Qin
- Department of Health Statistics, Second Military Medical University, Shanghai 200433, China
| | - Peng Zhang
- Department of Cardio-Thoracic Surgery, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Changxing Shen
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qing Xia
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lihong Fan
- Department of Respiratory Medicine, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Shanghai Clinical College, Anhui Medical University, Hefei 230032, Anhui Province, China
| |
Collapse
|
22
|
Quirk MT, Lee S, Murali N, Genshaft S, Abtin F, Suh R. Alternatives to Surgery for Early-Stage Non-Small Cell Lung Cancer: Thermal Ablation. Clin Chest Med 2020; 41:197-210. [PMID: 32402356 DOI: 10.1016/j.ccm.2020.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Thermal ablation involves the application of heat or cold energy to the lung under image guidance to eradicate tumors. It is indicated for treatment of early-stage non-small cell lung cancer in nonsurgical patients. Ablation technologies have advanced, such that nearly all small tumors can now be treated safely and effectively. Ablation does not cause a lasting decline in pulmonary function tests and may therefore be used to treat multiple synchronous and metachronous lung tumors, a chief advantage over other treatments. Large series with intermediate- and long-term data have been reported showing favorable overall survival, similar to radiation therapy.
Collapse
Affiliation(s)
- Matthew T Quirk
- Department of Radiology, UCLA Health, Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Suite 2125, Los Angeles, CA 90095, USA.
| | - Shimwoo Lee
- Department of Radiology, UCLA Health, Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Suite 2125, Los Angeles, CA 90095, USA
| | - Nikitha Murali
- Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA
| | - Scott Genshaft
- Department of Radiology, UCLA Health, Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Suite 2125, Los Angeles, CA 90095, USA
| | - Fereidoun Abtin
- Department of Radiology, UCLA Health, Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Suite 2125, Los Angeles, CA 90095, USA
| | - Robert Suh
- Department of Radiology, UCLA Health, Ronald Reagan UCLA Medical Center, 757 Westwood Plaza, Suite 2125, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Páez-Carpio A, Vollmer I, Paredes P. Evaluación de la respuesta al tratamiento con radiofrecuencia de un nódulo pulmonar mediante ecografía con contraste (CEUS). Arch Bronconeumol 2020; 56:531-532. [DOI: 10.1016/j.arbres.2020.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/10/2020] [Accepted: 03/05/2020] [Indexed: 11/25/2022]
|
24
|
Iguchi T, Hiraki T, Matsui Y, Mitsuhashi T, Katayama N, Katsui K, Soh J, Sakurai J, Gobara H, Toyooka S, Kanazawa S. Survival Outcomes of Treatment with Radiofrequency Ablation, Stereotactic Body Radiotherapy, or Sublobar Resection for Patients with Clinical Stage I Non-Small-Cell Lung Cancer: A Single-Center Evaluation. J Vasc Interv Radiol 2020; 31:1044-1051. [PMID: 32471699 DOI: 10.1016/j.jvir.2019.11.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/24/2019] [Accepted: 11/29/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To retrospectively compare the outcomes of radiofrequency (RF) ablation, stereotactic body radiotherapy (SBRT), and sublobar resection (SLR) in patients with stage I non-small-cell lung cancer (NSCLC) at a single center. MATERIALS AND METHODS Overall, 289 patients (38 RF ablation, 58 SBRT, and 193 SLR) were included. Kaplan-Meier curves were generated, multiple propensity score was estimated using a multinomial logistic regression model, and relationships between treatments and outcomes were assessed using a Cox proportional hazard model. Hazard ratios (HRs) for death from any cause and disease progression or death from any cause were examined by a crude model, an inverse probability of treatment weighting (IPTW) model, and an IPTW model adjusted for missing variables. RESULTS The 5-year overall and progression-free survival rates were 58.9% and 39.9%, respectively, for RF ablation; 42.0% and 34.9%, respectively, for SBRT; and 85.5% and 75.9%, respectively, for SLR. Significantly longer survival time and lower HR were observed for SLR than other treatments. However, after statistical adjustment, these relationships were not significant except for reduced HR of disease progression or death from any cause of SLR compared to RF ablation in the IPTW model. The median hospital stays for RF ablation, SBRT, and SLR were 6.5, 6, and 16 days, respectively. Adverse events of grade 3 or higher occurred only in 11 SLR cases. CONCLUSIONS SLR achieved the longest survival. However, after statistical adjustment, there were no significant outcome differences among RF ablation, SBRT, and SLR, except for 1 model. RF ablation or SBRT may be alternative treatments for selected patients with early-stage NSCLC.
Collapse
Affiliation(s)
- Toshihiro Iguchi
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikata-cho, kita-ku Okayama 700-8558, Japan.
| | - Takao Hiraki
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikata-cho, kita-ku Okayama 700-8558, Japan
| | - Yusuke Matsui
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikata-cho, kita-ku Okayama 700-8558, Japan
| | - Toshiharu Mitsuhashi
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Norihisa Katayama
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikata-cho, kita-ku Okayama 700-8558, Japan
| | - Kuniaki Katsui
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikata-cho, kita-ku Okayama 700-8558, Japan
| | - Junichi Soh
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan; Department of General Thoracic Surgery, Okayama University Medical School, Okayama, Japan; Department of Surgery, Division of Thoracic Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Jun Sakurai
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Hideo Gobara
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikata-cho, kita-ku Okayama 700-8558, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery, Okayama University Medical School, Okayama, Japan
| | - Susumu Kanazawa
- Department of Radiology, Okayama University Medical School, 2-5-1 Shikata-cho, kita-ku Okayama 700-8558, Japan
| |
Collapse
|
25
|
He T, Cao J, Xu J, Lv W, Hu J. [Minimally Invasive Therapies for Early Stage Non-small Cell Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:479-486. [PMID: 32106639 PMCID: PMC7309551 DOI: 10.3779/j.issn.1009-3419.2020.101.01] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
肺癌是目前全球最常见的癌症和癌症死亡的主要原因,其中非小细胞肺癌(non-small-cell lung cancer, NSCLC)约占肺癌总数的85%。随着计算机断层扫描(computed tomography, CT)等影像学筛查手段得到不断普及,肺癌的病理类型从以往以晚期中央型肺鳞癌为主,转变为现在的以早期周围型磨玻璃样结节等为表现的肺腺癌为主。肺癌的早诊早治有着重要意义,而微创介入技术的不断发展完善,使得肺癌治疗有了更多的选择,例如立体定向放射、经皮穿刺消融、支气管介入等。本文将就目前临床常见的这些微创介入治疗的作用原理、优势、不足及展望做一评述。
Collapse
Affiliation(s)
- Tianyu He
- Department of Thoracic Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Jinlin Cao
- Department of Thoracic Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Jinming Xu
- Department of Thoracic Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Wang Lv
- Department of Thoracic Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Jian Hu
- Department of Thoracic Surgery, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
26
|
Venturini M, Cariati M, Marra P, Masala S, Pereira PL, Carrafiello G. CIRSE Standards of Practice on Thermal Ablation of Primary and Secondary Lung Tumours. Cardiovasc Intervent Radiol 2020; 43:667-683. [PMID: 32095842 DOI: 10.1007/s00270-020-02432-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Massimo Venturini
- Department of Diagnostic and Interventional Radiology, Circolo Hospital, Insubria University, Varese, Italy.
| | - Maurizio Cariati
- Department of Diagnostic and Interventional Radiology, ASST Santi Carlo e Paolo Hospital, Milan, Italy
| | - Paolo Marra
- Department of Radiology, Papa Giovanni XXIII Hospital Bergamo, Milano-Bicocca University, Milan, Italy
| | - Salvatore Masala
- Department of Radiology, San Giovanni Battista Hospital, Tor Vergata University, Rome, Italy
| | - Philippe L Pereira
- Clinic for Radiology, Minimally-Invasive Therapies and Nuclear Medicine, SLK-Kliniken GmbH, Heilbronn, Germany
| | - Gianpaolo Carrafiello
- Department of Radiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
27
|
Matsui Y, Iguchi T, Tomita K, Uka M, Sakurai J, Gobara H, Kanazawa S. Radiofrequency Ablation for Stage I Non-Small Cell Lung Cancer: An Updated Review of Literature from the Last Decade. INTERVENTIONAL RADIOLOGY 2020; 5:43-49. [PMID: 36284655 PMCID: PMC9550390 DOI: 10.22575/interventionalradiology.2020-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/10/2020] [Indexed: 11/30/2022]
Abstract
This review summarizes the current findings on radiofrequency ablation (RFA) for stage I non-small cell lung cancer (NSCLC) from relevant literature published in the last decade. While most earlier studies included small populations and had short follow-up periods, more robust data have become available owing to prospective or large cohort studies. The reported overall survival rates after RFA for stage I NSCLC were 83-96%, 40-74%, and 23-61% at 1, 3, and 5 years, respectively, in recent studies. Furthermore, many comparative studies on the outcomes of RFA and stereotactic body radiotherapy have been performed. Most of these studies report no significant difference in survival outcomes between the therapies. Currently, major guidelines define RFA as a reasonable alternative treatment for stage I NSCLC in non-surgical candidates.
Collapse
Affiliation(s)
- Yusuke Matsui
- Department of Radiology, Okayama University Medical School
| | | | - Koji Tomita
- Department of Radiology, Okayama University Medical School
| | - Mayu Uka
- Department of Radiology, Okayama University Medical School
| | - Jun Sakurai
- Center for Innovative Clinical Medicine, Okayama University Hospital
| | - Hideo Gobara
- Department of Medical Informatics, Okayama University Hospital
| | | |
Collapse
|
28
|
Ager BJ, Wells SM, Gruhl JD, Stoddard GJ, Tao R, Kokeny KE, Hitchcock YJ. Stereotactic body radiotherapy versus percutaneous local tumor ablation for early-stage non-small cell lung cancer. Lung Cancer 2019; 138:6-12. [PMID: 31593894 DOI: 10.1016/j.lungcan.2019.09.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To compare patterns of care and overall survival (OS) between stereotactic body radiotherapy (SBRT) and percutaneous local tumor ablation (LTA) for non-surgically managed early-stage non-small-cell lung cancer (NSCLC). MATERIALS AND METHODS The National Cancer Database (NCDB) was queried from 2004 to 2014 for adults with non-metastatic, node-negative invasive adenocarcinoma or squamous cell carcinoma of the lung with primary tumor size ≤5.0 cm who did not undergo surgery or chemotherapy and received SBRT or LTA. Patterns of care were assessed with multivariate logistic regression. After propensity-score weighting with generalized boosted regression, OS was assessed with univariate and doubly-robust multivariate Cox regression. RESULTS Of 15,792 patients, 14,651 (93%) received SBRT and 1141 (7%) received LTA. Increasing age (OR 1.01, p = .035), treatment at an academic institution (OR 2.94, p < .001), increasing tumor size (OR 1.05, p < .001), and more recent year of diagnosis (OR 1.43, p < .001) were predictive of treatment with SBRT, whereas comorbidities (OR 0.74, p = .003) and treatment at a high-volume facility (OR 0.05, p < .001) were predictive for LTA. At a median follow-up of 26.2 months, SBRT was associated with improved OS relative to LTA within a propensity-score weighted doubly-robust multivariate analysis (HR 0.71, p < .001). On weighted subgroup analyses, improved OS was observed with SBRT for tumor sizes >2.0 cm (HR 0.72, p < .001) and for those treated at high-volume facilities (HR 0.71, p < .001). No OS difference was found with SBRT or LTA in tumor sizes ≤2.0 cm (HR 0.90, p = .227). CONCLUSION Within the NCDB, SBRT was more commonly utilized and was associated with improved OS when compared to percutaneous LTA for patients with non-surgically managed early-stage NSCLC. Patients with small tumor volumes likely represent an appropriate population for future prospective randomized comparisons between SBRT and LTA.
Collapse
Affiliation(s)
- Bryan J Ager
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Stacey M Wells
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Joshua D Gruhl
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Gregory J Stoddard
- Division of Epidemiology, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Randa Tao
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Kristine E Kokeny
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Ying J Hitchcock
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
29
|
Tafti BA, Genshaft S, Suh R, Abtin F. Lung Ablation: Indications and Techniques. Semin Intervent Radiol 2019; 36:163-175. [PMID: 31435124 DOI: 10.1055/s-0039-1693981] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lung ablation is ever more recognized since its initial report and use almost two decades ago. With technological advancements in thermal modalities, particularly microwave ablation and cryoablation, better identification of the cohort of patients who best benefit from ablation, and understanding the role of imaging after ablation, image-guided thermal ablation for primary and secondary pulmonary malignancies is increasingly recognized and accepted as a cogent form of local therapy.
Collapse
Affiliation(s)
- Bashir Akhavan Tafti
- Divisions of Interventional Radiology, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
| | - Scott Genshaft
- Thoracic Imaging at the Department of Radiological Sciences, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
| | - Robert Suh
- Divisions of Interventional Radiology, David Geffen School of Medicine, UCLA Health System, Los Angeles, California.,Thoracic Imaging at the Department of Radiological Sciences, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
| | - Fereidoun Abtin
- Divisions of Interventional Radiology, David Geffen School of Medicine, UCLA Health System, Los Angeles, California.,Thoracic Imaging at the Department of Radiological Sciences, David Geffen School of Medicine, UCLA Health System, Los Angeles, California
| |
Collapse
|
30
|
Amirahmadi R, Kumar AJ, Cowan M, Deepak J. Lung Cancer Screening in Patients with COPD-A Case Report. ACTA ACUST UNITED AC 2019; 55:medicina55070364. [PMID: 31336732 PMCID: PMC6681240 DOI: 10.3390/medicina55070364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 11/16/2022]
Abstract
We present two cases demonstrating the nuances that must be considered when determining if a patient could benefit from low dose computed tomography (LDCT) lung cancer screening. Our case report discusses the available literature, where it exists, on lung cancer screening with special attention to the impact of chronic obstructive pulmonary disease (COPD), and poor functional status. Patients with COPD and concurrent smoking history are at higher risk of lung cancer and may therefore benefit from lung cancer screening. However, this population is at increased risk for complications related to biopsies and lobar resections. Appropriate interventions other than surgical resection exist for COPD patients with poor pulmonary reserve. Risks and benefits of lung cancer screening are unique to each patient and require shared decision-making.
Collapse
Affiliation(s)
- Roxana Amirahmadi
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Avnee J Kumar
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mark Cowan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Janaki Deepak
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Division of Pulmonary and Critical Care Medicine, Baltimore VA Medical Health Center, Baltimore, MD 21201, USA
| |
Collapse
|
31
|
Osarogiagbon RU, Veronesi G, Fang W, Ekman S, Suda K, Aerts JG, Donington J. Early-Stage NSCLC: Advances in Thoracic Oncology 2018. J Thorac Oncol 2019; 14:968-978. [PMID: 30851441 PMCID: PMC6534444 DOI: 10.1016/j.jtho.2019.02.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/21/2022]
Abstract
2018 was a banner year for all thoracic oncology, but especially for early-stage NSCLC. Three seminal events occurred in the approximately 18 months from mid-2017 to the end of 2018: in June 2017 at the American Society of Clinical Oncology Annual Meeting a small, relatively unheralded study from Max Diehn's group at Stanford University reported on the use of a novel "cancer personalized profiling by deep sequencing" circulating tumor-DNA technology to identify minimal residual disease in patients after curative-intent radiation or surgery for NSCLC; in April 2018 at the American Association for Cancer Research Annual Meeting, Drew Pardoll presented a small pilot study of 21 patients who had received two doses of preoperative nivolumab; in September 2018, at the 19th World Conference on Lung Cancer, Harry J. De Koning presented the long-awaited results of the Dutch-Belgian Lung Cancer Screening Trial (NELSON). These three seminal studies, along with others which are reviewed in this paper, promise to accelerate our progress towards a world in which lung cancer is identified early, more patients undergo curative-intent treatment that achieves the promised cure, and those at risk for failure after treatment are identified early, when the cancer remains most vulnerable. The day is around the corner when lung cancer is defanged and no longer the worldwide terror it currently is. We herein present an overview of the most recent body of work that moves us inexorably towards that day.
Collapse
Affiliation(s)
| | - Giulia Veronesi
- Division of Thoracic and General Surgery, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Wentao Fang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Jiaotong University Medical School, Shanghai, China
| | - Simon Ekman
- Thoracic Oncology Center, Karolinska University Hospital/Dept of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Joachim G Aerts
- Thoracic Oncology Department, Erasumus University Medical Center, Rotterdam, Netherlands
| | - Jessica Donington
- Section of Thoracic Surgery, University of Chicago, Chicago, Illinois
| |
Collapse
|
32
|
Lavaud P, Besse B, de Baere T, Deschamps F, Mussot S, Le Pechoux C, Caramella C, Mercier O, Mezquitta L, Botticella A, Pradere P, Adam J, Planchard D, Tselikas L. Focus on Recommendations for the Management of Non-small Cell Lung Cancer. Cardiovasc Intervent Radiol 2019; 42:1230-1239. [PMID: 31062067 DOI: 10.1007/s00270-019-02222-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/10/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Pernelle Lavaud
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | - Benjamin Besse
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
- Faculté de médecine, Paris Sud, Paris Saclay, Orsay, France
| | - Thierry de Baere
- Faculté de médecine, Paris Sud, Paris Saclay, Orsay, France
- Interventional Radiology, Gustave Roussy, Villejuif, France
| | | | - Sacha Mussot
- Thoracic Surgery, Hopital Marie Lannelongue, Le Plessis Robinson, France
| | | | | | - Olaf Mercier
- Thoracic Surgery, Hopital Marie Lannelongue, Le Plessis Robinson, France
| | - Laura Mezquitta
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | | | - Pauline Pradere
- Pneumology, Hopital Marie Lannelongue, Le Plessis Robinson, France
| | - Julien Adam
- Pathology Department, Gustave Roussy, Villejuif, France
| | - David Planchard
- Cancer Medicine Department, Gustave Roussy, Villejuif, France
| | - Lambros Tselikas
- Interventional Radiology, Gustave Roussy, Villejuif, France.
- Laboratory of Translational Research in Immunology (LRTI), INSERM U1015, Villejuif, France.
| |
Collapse
|