1
|
Bitar R, Salem R, Finn R, Greten TF, Goldberg SN, Chapiro J, Atzen S. Interventional Oncology Meets Immuno-oncology: Combination Therapies for Hepatocellular Carcinoma. Radiology 2024; 313:e232875. [PMID: 39560477 PMCID: PMC11605110 DOI: 10.1148/radiol.232875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 08/15/2024] [Accepted: 08/27/2024] [Indexed: 11/20/2024]
Abstract
The management of hepatocellular carcinoma (HCC) is undergoing transformational changes due to the emergence of various novel immunotherapies and their combination with image-guided locoregional therapies. In this setting, immunotherapy is expected to become one of the standards of care in both neoadjuvant and adjuvant settings across all disease stages of HCC. Currently, more than 50 ongoing prospective clinical trials are investigating various end points for the combination of immunotherapy with both percutaneous and catheter-directed therapies. This review will outline essential tumor microenvironment mechanisms responsible for disease evolution and therapy resistance, discuss the rationale for combining locoregional therapy with immunotherapy, summarize ongoing clinical trials, and report on developing imaging end points and novel biomarkers that are relevant to both diagnostic and interventional radiologists participating in the management of HCC.
Collapse
Affiliation(s)
- Ryan Bitar
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Riad Salem
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Richard Finn
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Tim F. Greten
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - S. Nahum Goldberg
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Julius Chapiro
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| | - Sarah Atzen
- From the Departments of Radiology (R.B., J.C.) and Digestive Diseases
(Hepatology) (J.C.), Yale University School of Medicine, New Haven, Conn;
Department of Radiology, Feinberg School of Medicine, Northwestern University,
Chicago, Ill (R.S.); Department of Medical Oncology, Geffen School of Medicine,
University of California Los Angeles, Los Angeles, Calif (R.F.); Center for
Cancer Research, National Institutes of Health, Bethesda, Md (T.F.G.);
Department of Radiology, Hadassah Hebrew University Medical Center, Hebrew
University, Jerusalem, Israel (S.N.G.); and Department of Biomedical
Engineering, Yale School of Engineering and Applied Sciences, 789 Howard Ave,
Clinic Bldg 363H, New Haven, CT 06520 (J.C.)
| |
Collapse
|
2
|
Salvermoser L, Goldberg SN, Alunni-Fabbroni M, Kazmierczak PM, Gröper MN, Schäfer JN, Öcal E, Burkard T, Corradini S, Ben Khaled N, Petrera A, Wildgruber M, Ricke J, Stechele M. CT-guided high dose rate brachytherapy can induce multiple systemic proteins of proliferation and angiogenesis predicting outcome in HCC. Transl Oncol 2024; 43:101919. [PMID: 38401507 PMCID: PMC10906383 DOI: 10.1016/j.tranon.2024.101919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/28/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND AND PURPOSE To determine the potential prognostic value of proliferation and angiogenesis plasma proteins following CT-guided high dose rate brachytherapy (HDR-BT) of hepatocellular carcinoma (HCC). MATERIALS AND METHODS For this prospective study, HDR-BT (1 × 15 Gy) was administered to 24 HCC patients. Plasma was obtained and analyzed using an Olink proteomics Target-96 immuno-oncology-panel that included multiple markers of angiogenesis and proliferation. Fold-change (FC) ratios were calculated by comparing baseline and 48 h post HDR-BT paired samples. Patients were classified as responders (n = 12) if they had no local progression within 6 months or systemic progression within 2 years. Non-responders (n = 12) had recurrence within 6 months and/or tumor progression or extrahepatic disease within 2 years. RESULTS Proliferation marker EGF was significantly elevated in non-responders compared to responders (p = 0.0410) while FGF-2, HGF, and PlGF showed no significant differences. Angiogenesis markers Angiopoietin-1 and PDGF-B were likewise significantly elevated in non-responders compared to responders (p = 0.0171, p = 0.0462, respectively) while Angiopoietin-2, VEGF-A, and VEGFR-2 did not differ significantly. Kaplan-Meier analyses demonstrated significantly shorter time to systemic progression in patients with increased EGF and Angiopoietin-1 (p = 0.0185, both), but not in patients with one of the remaining proteins elevated (all p > 0.1). Pooled analysis for these 9 proteins showed significantly shorter time to systemic progression for FC ≥1.3 and ≥1.5 for at least 3 proteins elevated (p = 0.0415, p = 0.0193, respectively). CONCLUSION Increased plasma levels of EGF and Angiopoietin-1 after HDR-BT for HCC are associated with poor response and may therefore function as predictive biomarkers of outcome.
Collapse
Affiliation(s)
- Lukas Salvermoser
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Shraga Nahum Goldberg
- Department of Radiology, Goldyne Savad Institute of Gene Therapy and Division of Image-guided Therapy and Interventional Oncology, Hadassah Hebrew University Medical Center, Jerusalem 12000, Israel
| | - Marianna Alunni-Fabbroni
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | | | - Moritz Nikolaus Gröper
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Jan Niklas Schäfer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Elif Öcal
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Tanja Burkard
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich Marchioninistr. 15, Munich 81377, Germany
| | - Agnese Petrera
- Metabolomics and Proteomics Core, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany
| | - Matthias Stechele
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, Munich 81377, Germany.
| |
Collapse
|
3
|
Hirner-Eppeneder H, Öcal E, Stechele M, Öcal O, Gu S, Kimm MA, Wildgruber M, Salvermoser L, Kazmierczak P, Corradini S, Rudelius M, Piontek G, Pech M, Goldberg SN, Ricke J, Alunni-Fabbroni M. Post-therapeutic microRNA-146a in liquid biopsies may determine prognosis in metastatic gastrointestinal cancer patients receiving 90Y-radioembolization. J Cancer Res Clin Oncol 2023; 149:13017-13026. [PMID: 37466799 PMCID: PMC10587196 DOI: 10.1007/s00432-023-05185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE The role of microRNA-146a (miR-146a) in defining the tumor immune microenvironment (TIME) is well established. The aim of this study was to evaluate circulating miR-146a as an early prognostic marker of 90Y-radioembolization (90Y-RE) in metastatic liver cancer and to assess the correlation between circulating miR-146a and TIME cellular composition in distant, yet untreated metastases. METHODS Twenty-one patients with bilobar liver lesions from gastro-intestinal cancer underwent lobar 90Y-RE. Biopsy of contralateral lobe abscopal tumors was acquired at the onset of a second treatment session at a median of 21 days after initial RE, immediately prior to ablation therapy of the contralateral lobe tumor. miR-146a was measured by RT-qPCR in plasma collected 24 h before (T1) and 48 h after (T2) initial unilobar 90Y-RE. The level of miR-146a was correlated with the infiltration of CD4 + , CD8 + , FoxP3 T cells, CD163 + M2 macrophages and immune-exhausted T cells in the abscopal tumor tissue acquired before the second treatment session. RESULTS Plasma samples collected at T2 showed a higher concentration of miR-146a with respect to T1 in 43% of the patients (p = 0.002). In these patients, tumors revealed a pro-tumorigenic immune composition with enrichment of Tim3 + immune exhausted cells (p = 0.021), in combination with a higher infiltration of CD163 + M2 macrophages and a lower infiltration of CD8 + T cells. Patients with a higher level of miR-146a after 90Y-RE showed a trend to shorter OS (p = 0.055). CONCLUSION miR-146a may represent a novel prognostic biomarker for 90Y-radioembolization in metastatic liver cancer.
Collapse
Affiliation(s)
- Heidrun Hirner-Eppeneder
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Elif Öcal
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Matthias Stechele
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Osman Öcal
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Sijing Gu
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Melanie A Kimm
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Moritz Wildgruber
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Lukas Salvermoser
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Philipp Kazmierczak
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martina Rudelius
- Department of Pathology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Guido Piontek
- Department of Pathology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maciej Pech
- Department of Radiology and Nuclear Medicine, University of Magdeburg, Magdeburg, Germany
| | - S Nahum Goldberg
- Goldyne Savad Institute of Gene Therapy and Division of Image-Guided Therapy and Interventional Oncology, Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Jens Ricke
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany
| | - Marianna Alunni-Fabbroni
- Department of Radiology, LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377, Munich, Germany.
| |
Collapse
|