1
|
Byzova NA, Vinogradova SV, Porotikova EV, Terekhova UD, Zherdev AV, Dzantiev BB. Lateral Flow Immunoassay for Rapid Detection of Grapevine Leafroll-Associated Virus. BIOSENSORS 2018; 8:E111. [PMID: 30445781 PMCID: PMC6315891 DOI: 10.3390/bios8040111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
Abstract
Grapevine leafroll-associated virus 3 (GLRaV-3) is one of the main pathogens of grapes, causing a significant loss in yield and decrease in quality for this agricultural plant. For efficient widespread control of this infection, rapid and simple analytical techniques of on-site testing are requested as a complementary addition for the currently applied hybridization (PCR) and immunoenzyme (ELISA) approaches. The given paper presents development and approbation of the immunochromatographic assay (ICA) for rapid detection of GLRaV-3. The ICA realizes a sandwich immunoassay format with the obtaining complexes ((antibody immobilized on immunochromatographic membrane)⁻(virus in the sample)⁻(antibody immobilized on gold nanoparticles (GNP)) during sample flow along the membrane compounds of the test strip. Three preparations of GNPs were compared for detection of GLRaV-3 at different dilutions of virus-containing sample. The GNPs with maximal average diameters of 51.0 ± 7.9 nm provide GLRaV-3 detection for its maximal dilutions, being 4 times more than when using GNPs with a diameter of 28.3 ± 3.3 nm, and 8 times more than when using GNPs with a diameter of 18.5 ± 3.3 nm. Test strips have been manufactured using the largest GNPs conjugated with anti-GLRaV-3 antibodies at a ratio of 1070:1. When testing samples containing other grape wine viruses, the test strips have not demonstrated staining in the test zone, which confirms the ICA specificity. The approbation of the manufactured test strips indicated that when using ELISA as a reference method, the developed ICA is characterized by a sensitivity of 100% and a specificity of 92%. If PCR is considered as a reference method, then the sensitivity of ICA is 93% and the specificity is 92%. The proposed ICA can be implemented in one stage without the use of any additional reactants or devices. The testing results can be obtained in 10 min and detected visually. It provides significant improvement in GLRaV-3 detection, and the presented approach can be transferred for the development of test systems for other grape wine pathogens.
Collapse
Affiliation(s)
- Nadezhda A Byzova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Svetlana V Vinogradova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Elena V Porotikova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Uliana D Terekhova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Anatoly V Zherdev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| | - Boris B Dzantiev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow 119071, Russia.
| |
Collapse
|
2
|
Wang X, Kayesh E, Han J, Liu C, Wang C, Song C, Ge A, Fang J. Microarray analysis of differentially expressed genes engaged in fruit development between table and wine grape. Mol Biol Rep 2014; 41:4397-412. [PMID: 24728608 DOI: 10.1007/s11033-014-3311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
Microarray analysis of genes can provide individual gene-expression profiles and new insights for elucidating biological mechanisms responsible for fruit development. To obtain an overall view on expression profiles of metabolism-related genes involved in fruit development of table and wine grapes, a microarray system comprising 15,403 ESTs was used to compare the expressed genes. The expression patterns from the microarray analysis were validated with quantitative real-time polymerase chain reaction analysis of 18 selected genes of interest. During the entire fruit development stage, 2,493 genes exhibited at least 2.0-fold differences in expression levels with 1,244 genes being up-regulated and 1,249 being down-regulated. Following gene ontology analysis, only 929 differentially expressed (including 403 up-regulated and 526 down-regulated) genes were annotated in table and wine grapes. These differentially expressed genes were found to be mainly involved in carbohydrate metabolism, biosynthesis of secondary metabolites as well as energy, lipid and amino acid metabolism via KEGG. Our results provide new insights into the molecular mechanisms and expression profiles of genes in the fruit development stage of table and wine grapes.
Collapse
Affiliation(s)
- Xicheng Wang
- College of Horticulture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing, 210095, Jiangsu, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Kang X, Li Y, Fan L, Lin F, Wei J, Zhu X, Hu Y, Li J, Chang G, Zhu Q, Liu H, Yang Y. Development of an ELISA-array for simultaneous detection of five encephalitis viruses. Virol J 2012; 9:56. [PMID: 22369052 PMCID: PMC3305475 DOI: 10.1186/1743-422x-9-56] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/27/2012] [Indexed: 01/29/2023] Open
Abstract
Japanese encephalitis virus(JEV), tick-borne encephalitis virus(TBEV), and eastern equine encephalitis virus (EEEV) can cause symptoms of encephalitis. Establishment of accurate and easy methods by which to detect these viruses is essential for the prevention and treatment of associated infectious diseases. Currently, there are still no multiple antigen detection methods available clinically. An ELISA-array, which detects multiple antigens, is easy to handle, and inexpensive, has enormous potential in pathogen detection. An ELISA-array method for the simultaneous detection of five encephalitis viruses was developed in this study. Seven monoclonal antibodies against five encephalitis-associated viruses were prepared and used for development of the ELISA-array. The ELISA-array assay is based on a "sandwich" ELISA format and consists of viral antibodies printed directly on 96-well microtiter plates, allowing for direct detection of 5 viruses. The developed ELISA-array proved to have similar specificity and higher sensitivity compared with the conventional ELISAs. This method was validated by different viral cultures and three chicken eggs inoculated with infected patient serum. The results demonstrated that the developed ELISA-array is sensitive and easy to use, which would have potential for clinical use.
Collapse
Affiliation(s)
- Xiaoping Kang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Osman F, Olineka T, Hodzic E, Golino D, Rowhani A. Comparative procedures for sample processing and quantitative PCR detection of grapevine viruses. J Virol Methods 2012; 179:303-10. [DOI: 10.1016/j.jviromet.2011.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/28/2011] [Accepted: 11/09/2011] [Indexed: 10/15/2022]
|
5
|
Amplification-free detection of grapevine viruses using an oligonucleotide microarray. J Virol Methods 2011; 178:1-15. [PMID: 21820011 DOI: 10.1016/j.jviromet.2011.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/14/2011] [Accepted: 07/20/2011] [Indexed: 11/21/2022]
Abstract
A single-colour microarray hybridization system was designed and evaluated for the detection of viruses infecting grapevine. Total RNA (≥0.5μg) from infected plants was converted to cDNA and labelled with Cy3 using two different strategies. While amine-modified and labelled cDNA was adequate for the detection of nepoviruses, the 3DNA technique, a post-hybridization detection method that uses intensely fluorescent dendrimer reagents, was required for the detection of closteroviruses in infected plants. Threshold detection levels were based on the ratio between viral specific and 18S rRNA positive control signal intensities. Oligonucleotides between 27 and 75 nucleotides in length were evaluated and compared. Viruses detected include eight nepoviruses, two vitiviruses, and one each of closterovirus, foveavirus, ampelovirus, maculavirus and sadwavirus. Results of this work demonstrate the potential of microarray technique to detect viral pathogens without sequence bias amplification of template RNA.
Collapse
|
6
|
du Preez J, Stephan D, Mawassi M, Burger JT. The grapevine-infecting vitiviruses, with particular reference to grapevine virus A. Arch Virol 2011; 156:1495-503. [DOI: 10.1007/s00705-011-1071-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/01/2011] [Indexed: 11/29/2022]
|
7
|
Njambere EN, Clarke BB, Zhang N. Dimeric oligonucleotide probes enhance diagnostic macroarray performance. J Microbiol Methods 2011; 86:52-61. [DOI: 10.1016/j.mimet.2011.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2011] [Revised: 03/26/2011] [Accepted: 03/26/2011] [Indexed: 11/26/2022]
|
8
|
Tiberini A, Tomassoli L, Barba M, Hadidi A. Oligonucleotide microarray-based detection and identification of 10 major tomato viruses. J Virol Methods 2010; 168:133-40. [DOI: 10.1016/j.jviromet.2010.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/27/2010] [Accepted: 05/05/2010] [Indexed: 12/21/2022]
|
9
|
Wang X, Shi L, Tao Q, Bao H, Wu J, Cai D, Wang F, Zhao Y, Tian G, Li Y, Qao C, Chen H. A protein chip designed to differentiate visually antibodies in chickens which were infected by four different viruses. J Virol Methods 2010; 167:119-24. [DOI: 10.1016/j.jviromet.2010.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2009] [Revised: 03/23/2010] [Accepted: 03/23/2010] [Indexed: 01/09/2023]
|
10
|
Engel EA, Escobar PF, Rojas LA, Rivera PA, Fiore N, Valenzuela PDT. A diagnostic oligonucleotide microarray for simultaneous detection of grapevine viruses. J Virol Methods 2009; 163:445-51. [PMID: 19914293 PMCID: PMC7112925 DOI: 10.1016/j.jviromet.2009.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 11/09/2022]
Abstract
At least 58 viruses have been reported to infect grapevines causing economic damage globally. Conventional detection strategies based on serological assays, biological indexing and RT-PCR targeting one or few viruses in each assay are widely used. Grapevines are prone to contain mixed infections of several viruses, making the use of these techniques time-consuming. A 70-mer oligonucleotide microarray able to detect simultaneously a broad spectrum of known viruses as well as new viruses by cross-hybridization to highly conserved probes is reported in the present study. The array contains 570 unique probes designed against highly conserved and species-specific regions of 44 plant viral genomes. In addition probes designed against plant housekeeping genes are also included. By using a random primed RT-PCR amplification strategy of grapevine double stranded RNA-enriched samples, viral agents were detected in single and mixed infections. The microarray accuracy to detect 10 grapevine viruses was compared with RT-PCR yielding consistent results. For this purpose, grapevine samples containing single or mixed infections of Grapevine leafroll-associated virus-1, -2, -3, -4, -7, -9, Grapevine fanleaf virus, Grapevine rupestris stem pitting-associated virus, Grapevine virus A, and Grapevine virus B were used. Genomic libraries containing complete viral genomes were also used as part of the validation process. The specific probe hybridization pattern obtained from each virus makes this approach a powerful tool for high throughput plant certification purposes and also for virus discovery if the new viral genomic sequences have partial similarity with the microarray probes. Three Closteroviridae members (Grapevine leafroll-associated virus -4, -7 and -9) were detected for the first time in Chilean grapevines using the microarray.
Collapse
Affiliation(s)
- Esteban A Engel
- Fundación Ciencia para la Vida and Instituto Milenio de Biología Fundamental y Aplicada, Zañartu 1482, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|