1
|
Faggioni G, De Santis R, Moramarco F, Di Donato M, De Domenico A, Molinari F, Petralito G, Fortuna C, Venturi G, Rezza G, Lista F. Pan-Yellow Fever Virus Detection and Lineage Assignment by Real-Time RT-PCR and Amplicon Sequencing. J Virol Methods 2023; 316:114717. [PMID: 36972832 DOI: 10.1016/j.jviromet.2023.114717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Yellow fever disease is a viral zoonosis that may result in a severe hemorrhagic disease. A safe and effective vaccine used in mass immunization campaigns has allowed control and mitigation against explosive outbreaks in endemic areas. Since the 1960's, re-emergent of the yellow fever virus has been observed. The timely implementation of control measures, to avoid or contain an ongoing outbreak requires rapid specific viral detection methods. Here a novel molecular assay, expected to detect all known yellow fever virus strains, is described. The method has demonstrated high sensitivity and specificity in real-time RT-PCR as well as in an endpoint RT-PCR set-up. Sequence alignment and phylogenetic analysis reveal that the amplicon resulting from the novel method covers a genomic region whose mutational profile is completely associated to the yellow fever viral lineages. Therefore, sequencing analysis of this amplicon allows for assignment of the viral lineage.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Claudia Fortuna
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Giulietta Venturi
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | - Giovanni Rezza
- Health Prevention Directorate, Ministry of Health, Rome, Italy.
| | - Florigio Lista
- Army Medical Center, Scientific Department, Rome, Italy.
| |
Collapse
|
2
|
Tomar PS, Patel S, Dash PK, Kumar JS. Simple and Field Amenable Loop-Mediated Isothermal Amplification-Lateral Flow Dipstick Assay for Detection of West Nile Virus in Human Clinical Samples. J Appl Microbiol 2022; 133:3512-3522. [PMID: 36007965 DOI: 10.1111/jam.15783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/27/2022]
Abstract
AIM West Nile encephalitis caused by infection with the West Nile virus (WNV) is endemic in many regions of the world and is a global public health threat. The aim of this report was to develop a method using colorimetry based reverse-transcription loop-mediated isothermal amplification (cRT-LAMP) and RT-LAMP combined with lateral-flow dipstick (LFD) for rapidly detecting WNV in low-infrastructure settings. METHODS AND RESULTS The primers for the cRT-LAMP and RT-LAMP-LFD assay were designed based on env gene of the WNV. Primers concentration, temperature, and time were optimized for cRT-LAMP and RT-LAMP-LFD. The diagnostic performance of the cRT-LAMP and RT-LAMP-LFD assay was evaluated using human serum samples from 110 patients who were clinically suspected to be infected with WNV. The RT-LAMP was performed in a heating block at 63°C for 40 minutes. The LAMP amplicons were visible in the lateral-flow dipstick within 5 minutes. The detection limit of the developed cRT-LAMP and RT-LAMP-LFD assay was 10 copies and this assay showed high degree of specificity for WNV. Compared with quantitative real-time RT-PCR assay, the kappa value of cRT-LAMP and RT-LAMP-LFD were 0.970. CONCLUSIONS These results showed that the newly developed WNV specific cRT-LAMP and RT-LAMP-LFD assays can be employed as an alternative method for screening of WN suspected human samples. The results revealed that the assay could potentially identify the virus without interference from human serum samples. Collectively, the all results revealed that cRT-LAMP and RT-LAMP-LFD assay offers suitable field based diagnosis of WNV. SIGNIFICANCE AND IMPACT OF STUDY The cRT-LAMP and LAMP-LFD platform for the detection of WNV is rapid, accurate, and simple-to-perform. Our present method has not only a short turnaround time but also avoided cross-contamination problem. Moreover, the use of simple lateral flow dipsticks broadens its application potential to the point-of-care use in resource-limited settings during outbreak situations. To the best of our knowledge this is the first report for the development of cRT-LAMP and LAMP-LFD assay for rapid, simple, specific, and sensitive detection of WNV using human clinical samples and EvaGreen dye.
Collapse
Affiliation(s)
- Priyanka Singh Tomar
- Division of Virology, Defence Research and Development Establishment, Jhansi Road, Gwalior- 474002, Madhya Pradesh, India
| | - Sapan Patel
- School of Studies in Botany, Jiwaji University, Gwalior
| | | | - Jyoti S Kumar
- Division of Virology, Defence Research and Development Establishment, Jhansi Road, Gwalior- 474002, Madhya Pradesh, India
| |
Collapse
|
3
|
Warang A, Zhang M, Zhang S, Shen Z. A panel of real-time PCR assays for the detection of Bourbon virus, Heartland virus, West Nile virus, and Trypanosoma cruzi in major disease-transmitting vectors. J Vet Diagn Invest 2021; 33:1115-1122. [PMID: 34414840 DOI: 10.1177/10406387211039549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Vector-borne pathogens, such as Bourbon virus (BRBV), Heartland virus (HRTV), West Nile virus (WNV), and Trypanosoma cruzi (TCZ) are a great threat to public health and animal health. We developed a panel of TaqMan real-time PCR assays for pathogen surveillance. PCR targets were selected based on nucleic acid sequences deposited in GenBank. Primers and probes were either designed de novo or selected from publications. The coverages and specificities of the primers and probes were extensively evaluated by performing BLAST searches. Synthetic DNA or RNA fragments (gBlocks) were used as PCR templates in initial assay development and PCR positive controls in subsequent assay validation. For operational efficiency, the same thermocycling profile was used in BRBV, HRTV, and WNV reverse-transcription quantitative PCR (RT-qPCR) assays, and a similar thermocycling profile without the initial reverse-transcription step was used in TCZ qPCR. The assays were optimized by titrating primer and probe concentrations. The analytical sensitivities were 100, 100, 10, and 10 copies of gBlock per reaction for BRBV (Cq = 36.0 ± 0.7), HRTV (Cq = 36.6 ± 0.9), WNV (Cq = 35.5 ± 0.4), and TCZ (Cq = 38.8 ± 0.3), respectively. PCR sensitivities for vector genomic DNA or RNA spiked with gBlock reached 100, 100, 10, and 10 copies per reaction for BRBV, HRTV, WNV, and TCZ, respectively. PCR specificity evaluated against a panel of non-target pathogens showed no significant cross-reactivity. Our BRBV, HRTV, WNV, and TCZ PCR panel could support epidemiologic studies and pathogen surveillance.
Collapse
Affiliation(s)
- Anushri Warang
- Veterinary Medical Diagnostic Laboratory and Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Michael Zhang
- Veterinary Medical Diagnostic Laboratory and Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Shuping Zhang
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Zhenyu Shen
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, MO, USA
| |
Collapse
|
4
|
Tomar PS, Kumar JS, Patel S, Sharma S. Polymerase Spiral Reaction Assay for Rapid and Real Time Detection of West Nile Virus From Clinical Samples. Front Cell Infect Microbiol 2020; 10:426. [PMID: 32984063 PMCID: PMC7492713 DOI: 10.3389/fcimb.2020.00426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/13/2020] [Indexed: 12/02/2022] Open
Abstract
West Nile virus (WNV) is a mosquito-borne virus of public health importance. Currently, there is no FDA approved vaccine available against WNV infection in humans. Therefore, the early diagnosis of the WNV infection is important for epidemiologic control and timely clinical management in areas where multiple Flaviviruses are endemic. The present study aimed to develop reverse transcription polymerase spiral reaction (RT-PSR) assay that rapidly and accurately detects the envelope (env) gene of WNV. RT-PSR assay was optimized at 63°C for 60 min using real-time turbidimeter or visual detection by the addition of SYBR Green I dye. The standard curve for RT-PSR assay was generated using the 10-fold serial dilutions of in vitro transcribed WNV RNA. To determine the detection limit of RT-PSR assay, an amplified product of conventional RT-PCR was in vitro transcribed as per standard protocol. The detection limit of the newly developed RT-PSR assay was compared with that of conventional RT-PCR and CDC reported TaqMan real-time RT-PCR using a serial 10-fold dilution of IVT WNV RNA. The detection limit of RT-PSR was found to be 1 RNA copy, which is 100-fold higher than that of conventional RT-PCR (100 copies). This suggests that RT-PSR assay is a valuable diagnostic tool for rapid and real-time detection of WNV in acute-phase serum samples. The assay was validated with a panel of 107 WNV suspected human clinical samples with signs of acute posterior uveitis and onset of febrile illness. Out of 107 samples, 30 were found positive by RT-PSR assay. The specificities of the selected primer sets were established by the absence of cross-reactivity with other closely related members viruses of the Flaviviruses, Alphaviruses, and Morbilliviruses groups. No cross-reactivity was observed with other viruses. To best of our knowledge, this is the first report describing the RT-PSR assay for the detection of RNA virus (WNV) in clinical samples. RT-PSR is a high throughput method and more than 30 reactions can be run at once in real-time turbidimeter. PSR assay has potential to be used for a rapid screening of large number of clinical samples in endemic areas during an outbreak.
Collapse
Affiliation(s)
- Priyanka Singh Tomar
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Jyoti S Kumar
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| | - Sapan Patel
- School of Studies in Botany, Jiwaji University, Gwalior, India
| | - Shashi Sharma
- Division of Virology, Defence Research and Development Establishment, Gwalior, India
| |
Collapse
|
5
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán-Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): West Nile fever. EFSA J 2017; 15:e04955. [PMID: 32625621 PMCID: PMC7009844 DOI: 10.2903/j.efsa.2017.4955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
West Nile fever (WNF) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of WNF to be listed, Article 9 for the categorisation of WNF according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to WNF. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, WNF can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in Sections 2 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (b) and (e) of Article 9(1). The animal species to be listed for WNF according to Article 8(3) criteria are several orders of birds and mammals as susceptible species and several families of birds as reservoir. Different mosquito species can serve as vectors.
Collapse
|
6
|
Fall G, Faye M, Weidmann M, Kaiser M, Dupressoir A, Ndiaye EH, Ba Y, Diallo M, Faye O, Sall AA. Real-Time RT-PCR Assays for Detection and Genotyping of West Nile Virus Lineages Circulating in Africa. Vector Borne Zoonotic Dis 2016; 16:781-789. [PMID: 27710313 DOI: 10.1089/vbz.2016.1967] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
West Nile virus (WNV) is an emerging arbovirus, circulating worldwide between birds and mosquitoes, which impacts human and animal health. Since the mid-1990s, WNV outbreaks have emerged in Europe and America and represent currently the primary cause of encephalitis in the United States. WNV exhibits a great genetic diversity with at least eight different lineages circulating in the world, and four (1, 2, Koutango, and putative new) are present in Africa. These different WNV lineages are not readily differentiated by serology, and thus, rapid molecular tools are required for diagnostic. We developed here real-time RT-PCR assays for detection and genotyping of African WNV lineages. The specificity of the assays was tested using other flaviviruses circulating in Africa. The sensitivity was determined by testing serial 10-fold dilutions of viruses and RNA standards. The assays provided good specificity and sensitivity and the analytical detection limit was 10 copies/reaction. The RT-PCR assays allowed the detection and genotyping of all WNV isolates in culture medium, human serum, and vertebrate tissues, as well as in field and experimental mosquito samples. Comparing the ratios of genome copy number/infectious virion (plaque-forming units), our study finally revealed new insight on the replication of these different WNV lineages in mosquito cells. Our RT-PCR assays are the first ones allowing the genotyping of all WNV African variants, and this may have important applications in surveillance and epidemiology in Africa and also for monitoring of their emergence in Europe and other continents.
Collapse
Affiliation(s)
- Gamou Fall
- 1 Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar , Dakar, Senegal
| | - Martin Faye
- 1 Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar , Dakar, Senegal
| | - Manfred Weidmann
- 2 Institute of Aquaculture, University of Stirling , Stirling, Scotland
| | | | - Anne Dupressoir
- 1 Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar , Dakar, Senegal
| | - El Hadj Ndiaye
- 4 Unité d'Entomologie Médicale, Institut Pasteur de Dakar , Dakar, Senegal
| | - Yamar Ba
- 4 Unité d'Entomologie Médicale, Institut Pasteur de Dakar , Dakar, Senegal
| | - Mawlouth Diallo
- 4 Unité d'Entomologie Médicale, Institut Pasteur de Dakar , Dakar, Senegal
| | - Ousmane Faye
- 1 Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar , Dakar, Senegal
| | - Amadou Alpha Sall
- 1 Unité des Arbovirus et Virus de Fièvres Hémorragiques, Institut Pasteur de Dakar , Dakar, Senegal
| |
Collapse
|
7
|
Vázquez A, Herrero L, Negredo A, Hernández L, Sánchez-Seco MP, Tenorio A. Real time PCR assay for detection of all known lineages of West Nile virus. J Virol Methods 2016; 236:266-270. [PMID: 27481597 DOI: 10.1016/j.jviromet.2016.07.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 07/29/2016] [Accepted: 07/29/2016] [Indexed: 11/17/2022]
Abstract
West Nile virus (WNV) is one of the most widespread arbovirus and a large variety of WNV strains and lineages have been described. The molecular methods for the diagnosis of WNV target mainly lineages 1 and 2, which have caused outbreaks in humans, equines and birds. But the last few years new and putative WNV lineages of unknown pathogenicity have been described. Here we describe a new sensitive and specific real-time PCR assay for the detection and quantification of all the WNV lineages described until now. Primers and probe were designed in the 3'-untranslated region (3'-UTR) of the WNV genome and were designed to match all sequenced WNV strains perfectly. The sensitivity of the assay ranged from 1,5 to 15 copies per reaction depending on the WNV lineage tested. The method was validated for WNV diagnosis using different viral strains, human samples (cerebrospinal fluid, biopsies, serum and plasma) and mosquito pools. The assay did not amplify any other phylogenetically or symptomatically related viruses. All of the above make it a very suitable tool for the diagnosis of WNV and for surveillance studies.
Collapse
Affiliation(s)
- Ana Vázquez
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain.
| | - Laura Herrero
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| | - Anabel Negredo
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| | - Lourdes Hernández
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| | - María Paz Sánchez-Seco
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| | - Antonio Tenorio
- Laboratory of Arboviruses and Imported Viral Diseases, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km. 2, 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
8
|
Cao Z, Wang H, Wang L, Li L, Jin H, Xu C, Feng N, Wang J, Li Q, Zhao Y, Wang T, Gao Y, Lu Y, Yang S, Xia X. Visual Detection of West Nile Virus Using Reverse Transcription Loop-Mediated Isothermal Amplification Combined with a Vertical Flow Visualization Strip. Front Microbiol 2016; 7:554. [PMID: 27148234 PMCID: PMC4837158 DOI: 10.3389/fmicb.2016.00554] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/04/2016] [Indexed: 01/01/2023] Open
Abstract
West Nile virus (WNV) causes a severe zoonosis, which can lead to a large number of casualties and considerable economic losses. A rapid and accurate identification method for WNV for use in field laboratories is urgently needed. Here, a method utilizing reverse transcription loop-mediated isothermal amplification combined with a vertical flow visualization strip (RT-LAMP-VF) was developed to detect the envelope (E) gene of WNV. The RT-LAMP-VF assay could detect 102 copies/μl of an WNV RNA standard using a 40 min amplification reaction followed by a 2 min incubation of the amplification product on the visualization strip, and no cross-reaction with other closely related members of the Flavivirus genus was observed. The assay was further evaluated using cells and mouse brain tissues infected with a recombinant rabies virus expressing the E protein of WNV. The assay produced sensitivities of 101.5 TCID50/ml and 101.33 TCID50/ml for detection of the recombinant virus in the cells and brain tissues, respectively. Overall, the RT-LAMP-VF assay developed in this study is rapid, simple and effective, and it is therefore suitable for clinical application in the field.
Collapse
Affiliation(s)
- Zengguo Cao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences Changchun, China
| | - Hualei Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Lina Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Animal Science and Technology College, Jilin Agricultural UniversityChangchun, China
| | - Ling Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; College of Veterinary Medicine, Jilin UniversityChangchun, China
| | - Hongli Jin
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Changchun SR Biological Technology Co., Ltd., ChangchunChina
| | - Changping Xu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Center for Disease Control and PreventionHangzhou, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Jianzhong Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences Changchun, China
| | - Qian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences Changchun, China
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Yiyu Lu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Key Laboratory of Emergency Detection for Public Health of Zhejiang Province, Zhejiang Provincial Center for Disease Control and PreventionHangzhou, China
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical SciencesChangchun, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhou, China
| |
Collapse
|