1
|
Mescolini G, Baigent SJ, Catelli E, Nair VK. Rapid, Sensitive, and Species-Specific Detection of Conventional and Recombinant Herpesvirus of Turkeys Vaccines Using Loop-Mediated Isothermal Amplification Coupled With a Lateral Flow Device Readout. Front Vet Sci 2022; 9:873163. [PMID: 35812862 PMCID: PMC9260039 DOI: 10.3389/fvets.2022.873163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Marek's disease, an economically important disease of chickens caused by virulent serotype 1 strains of the Mardivirus Marek's disease virus (MDV-1), is effectively controlled in the field by live attenuated vaccine viruses including herpesvirus of turkeys (HVT)—both conventional HVT (strain FC126) and, in recent years, recombinant HVT viruses carrying foreign genes from other avian viruses to protect against both Marek's disease and other avian viral diseases. Testing to monitor and confirm successful vaccination is important, but any such test must differentiate HVT from MDV-1 and MDV-2, as vaccination does not prevent infection with these serotypes. End-point and real-time PCR tests are widely used to detect and differentiate HVT, MDV-1 and MDV-2 but require expensive specialist laboratory equipment and trained operators. Here, we developed and validated two tube-based loop-mediated isothermal amplification tests coupled with detection by lateral flow device readout (LAMP-LFD): an HVT-specific test to detect both conventional and recombinant HVT strains, and a second test using novel LAMP primers to specifically detect the Vaxxitek® recombinant HVT. Specificity was confirmed using DNA extracted from virus-infected cultured cells, and limit of detection was determined using plasmid DNA carrying either the HVT or Vaxxitek® genome. The LAMP-LFD tests accurately detected all HVT vaccines, or Vaxxitek® only, in crude DNA as well as purified DNA extracted from field samples of organs, feathers, or poultry house dust that were confirmed positive for HVT by real-time PCR. These LAMP-LFD tests have potential for specific, rapid, simple, and inexpensive detection of HVT vaccines in the field.
Collapse
Affiliation(s)
- Giulia Mescolini
- Avian Pathology Service, Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Susan J. Baigent
- Viral Oncogenesis Group, The Pirbright Institute, Woking, United Kingdom
- *Correspondence: Susan J. Baigent
| | - Elena Catelli
- Avian Pathology Service, Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Venugopal K. Nair
- Viral Oncogenesis Group, The Pirbright Institute, Woking, United Kingdom
| |
Collapse
|
2
|
Zhang L, Zhu C, Heidari M, Dong K, Chang S, Xie Q, Zhang H. Marek's disease vaccines-induced differential expression of known and novel microRNAs in primary lymphoid organ bursae of White Leghorn. Vet Res 2020; 51:19. [PMID: 32093775 PMCID: PMC7038564 DOI: 10.1186/s13567-020-00746-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Marek’s disease (MD) is a contagious disease of domestic chickens caused by MD viruses. MD has been controlled primarily by vaccinations, yet sporadic outbreaks of MD take place worldwide. Commonly used MD vaccines include HVT, SB-1 and CVI988/Rispens and their efficacies are reportedly dependent of multiple factors including host genetics. Our previous studies showed protective efficacy of a MD vaccine can differ drastically from one chicken line to the next. Advanced understanding on the underlying genetic and epigenetic factors that modulate vaccine efficacy would greatly improve the strategy in design and development of more potent vaccines. Two highly inbred lines of White Leghorn were inoculated with HVT and CVI988/Rispens. Bursa samples were taken 26 days post-vaccination and subjected to small RNA sequencing analysis to profile microRNAs (miRNA). A total of 589 and 519 miRNAs was identified in one line, known as line 63, 490 and 630 miRNAs were identified in the other, known as line 72, in response to HVT or CVI988/Rispens inoculation, respectively. HVT and CVI988/Rispens induced mutually exclusive 4 and 13 differentially expressed (DE) miRNAs in line 63 birds in contrast to a non-vaccinated group of the same line. HVT failed to induce any DE miRNA and CVI988/Rispens induced a single DE miRNA in line 72 birds. Thousands of target genes for the DE miRNAs were predicted, which were enriched in a variety of gene ontology terms and pathways. This finding suggests the epigenetic factor, microRNA, is highly likely involved in modulating vaccine protective efficacy in chicken.
Collapse
Affiliation(s)
- Lei Zhang
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA.,Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin, 130112, China
| | - Chen Zhu
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA.,Michigan State University, East Lansing, MI, 48824, USA
| | - Mohammad Heidari
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA
| | - Kunzhe Dong
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, 30912, USA
| | - Shuang Chang
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA.,College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qingmei Xie
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA.,College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, USDA-ARS, East Lansing, MI, 48823, USA.
| |
Collapse
|
3
|
Zeng F, Wu M, Ma L, Han Z, Shi Y, Zhang Y, Liu C, Zhang S, Cong F, Liu S. Rapid and sensitive real-time recombinase polymerase amplification for detection of Marek's disease virus. Mol Cell Probes 2019; 48:101468. [PMID: 31580913 DOI: 10.1016/j.mcp.2019.101468] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Marek's disease (MD) is one of the most devastating diseases of poultry. It's caused by the highly infectious alphaherpesvirus MD virus serotype 1 (MDV-1). In this study, a rapid and easy-to-use assay based on recombinase polymerase amplification (RPA) was developed for MDV detection. Primer-probe sets targeting the highly conserved region of Meq gene were designed and applied to the RPA assay. The assay was carried out on a real-time thermostatic fluorescence detector at 39 °C for 20 min. As revealed by the results, no cross-reactions were found with the Newcastle disease virus (NDV), chicken infectious anemia virus (CAV), infectious bursal disease virus (IBDV), avian infectious bronchitis virus (IBV), infectious laryngotracheitis virus (ILTV), avain influenza virus (AIV), avian leucosis virus (ALV), avian reovirus (ARV), Marek's disease virus serotype 2 (MDV-2) and turkey herpes virus (HVT), indicating appropriate specificity of the assay. Plasmid DNA standards were used to determine the sensitivity of the assay and the detection limit was 102copies/μL. To further evaluate the clinical performance, 94 clinical samples were subjected to the RPA assay and 28 samples were tested MDV positive, suggesting that the real-time RPA assay was sufficient enough for clinical sample detection. Thus, a highly specific and sensitive real-time RPA assay was established and validated as a candidate for MDV diagnosis. Additionally, the portability of real-time RPA assay makes it suitable to be potentially applied in clinical diagnosis in the field, especially in resource-limited settings.
Collapse
Affiliation(s)
- Fanwen Zeng
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China; College of Animal Science of South China Agricultural University, Guangzhou, 510640, China
| | - Miaoli Wu
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Lei Ma
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150026, China
| | - Yue Shi
- Beijing Senkang Biotech Development Co., Ltd., Beijing, 101400, China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150026, China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150026, China
| | - Shouquan Zhang
- College of Animal Science of South China Agricultural University, Guangzhou, 510640, China.
| | - Feng Cong
- Guangdong Laboratory Animals Monitoring Institute and Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, 510633, China.
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Harbin, 150026, China.
| |
Collapse
|
4
|
Song H, Bae Y, Park S, Kwon H, Lee H, Joh S. Loop-mediated isothermal amplification assay for detection of four immunosuppressive viruses in chicken. J Virol Methods 2018; 256:6-11. [PMID: 29476761 DOI: 10.1016/j.jviromet.2018.02.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/31/2018] [Accepted: 02/19/2018] [Indexed: 11/28/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) methods to detect chicken infectious anemia virus (CIAV), reticuloendotheliosis virus (REV), and Marek's disease virus (MDV), and a reverse transcription (RT)-LAMP assay to detect infectious bursal disease virus (IBDV), were developed. The CIAV-LAMP, REV-LAMP, MDV-LAMP, and IBDV-RT-LAMP methods were performed using four sets of six primers targeting the VP1 gene of CIAV, the gp90 gene of REV, the Meq gene of MDV, and the VP2 gene of IBDV. The results (a change in color) were observed visually. The methods showed high specificity and sensitivity. The detection limits were 50 genomic copies of CIAV, 16 genomic copies of REV, 20 genomic copies of MDV, and 250 genomic copies of IBDV. When used to test clinical samples, the results of the LAMP assays were in 100% agreement with a previously described PCR. Therefore, the LAMP assays are simple, rapid, highly sensitive, and specific methods for detecting four immune-suppressive viruses.
Collapse
Affiliation(s)
- HyeSoon Song
- Avian Disease Division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - YouChan Bae
- Avian Disease Division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - SeokChan Park
- Avian Disease Division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - HyukMan Kwon
- Avian Disease Division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - HeeSoo Lee
- Avian Disease Division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea
| | - SeongJoon Joh
- Avian Disease Division, Animal and Plant Quarantine Agency, HyukSin 8-ro, GimCheon, Republic of Korea.
| |
Collapse
|
5
|
Adedeji AJ, Abdu PA, Luka PD, Owoade AA, Joannis TM. Application of loop-mediated isothermal amplification assay in the detection of herpesvirus of turkey (FC 126 strain) from chicken samples in Nigeria. Vet World 2017; 10:1383-1388. [PMID: 29263603 PMCID: PMC5732347 DOI: 10.14202/vetworld.2017.1383-1388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/24/2017] [Indexed: 11/30/2022] Open
Abstract
Aim: This study was designed to optimize and apply the use of loop-mediated isothermal amplification (LAMP) as an alternative to conventional polymerase chain reaction (PCR) for the detection of herpesvirus of turkeys (HVT) (FC 126 strain) in vaccinated and non-vaccinated poultry in Nigeria. Materials and Methods: HVT positive control (vaccine) was used for optimization of LAMP using six primers that target the HVT070 gene sequence of the virus. These primers can differentiate HVT, a Marek’s disease virus (MDV) serotype 3 from MDV serotypes 1 and 2. Samples were collected from clinical cases of Marek’s disease (MD) in chickens, processed and subjected to LAMP and PCR. Results: LAMP assay for HVT was optimized. HVT was detected in 60% (3/5) and 100% (5/5) of the samples analyzed by PCR and LAMP, respectively. HVT was detected in the feathers, liver, skin, and spleen with average DNA purity of 3.05-4.52 μg DNA/mg (A260/A280) using LAMP. Conventional PCR detected HVT in two vaccinated and one unvaccinated chicken samples, while LAMP detected HVT in two vaccinated and three unvaccinated corresponding chicken samples. However, LAMP was a faster and simpler technique to carry out than PCR. Conclusion: LAMP assay for the detection of HVT was optimized. LAMP and PCR detected HVT in clinical samples collected. LAMP assay can be a very good alternative to PCR for detection of HVT and other viruses. This is the first report of the use of LAMP for the detection of viruses of veterinary importance in Nigeria. LAMP should be optimized as a diagnostic and research tool for investigation of poultry diseases such as MD in Nigeria.
Collapse
Affiliation(s)
- A J Adedeji
- Viral Research Division, National Veterinary Research Institute, Vom, Nigeria
| | - P A Abdu
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - P D Luka
- Biotechnology Division, National Veterinary Research Institute, Vom, Nigeria
| | - A A Owoade
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Nigeria
| | - T M Joannis
- Regional Laboratory for Animal Influenza and Other Transboundary Animal Diseases, National Veterinary Research Institute, Vom, Nigeria
| |
Collapse
|