1
|
Ariyanta HA, Roji F, Apriandanu DOB. Electrochemical activity of glassy carbon electrode modified with ZnO nanoparticles prepared Via Senna Alata L. leaf extract towards antiretroviral drug. MICRO AND NANO SYSTEMS LETTERS 2022. [DOI: 10.1186/s40486-022-00147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
AbstractThe phytosynthesis method was used to prepare ZnO nanoparticles (ZnO NPs) via Senna alata L. leaf extract (SALE) by involving alkaloids, which play an essential role as a source of weak bases during the formation reaction of NPs. ZnO NPs on glassy carbon electrodes (GCE/ZnO NP) have been introduced to investigate its electrochemical activity towards the antiretroviral drug, lamivudine (3TC). Several characterization techniques, such as Fourier Transform Infra-Red (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), and Dynamic Light Scattering (DLS) techniques were employed to analyze the properties of GCE/ZnO NPs. As a result, ZnO NPs in spherical shape showed a high purity crystalline hexagonal wurtzite structure with a particle diameter of 40–60 nm. A Cyclic Voltammetry (CV) measurement confirmed that the electrochemical reduction of 3TC on GCE/ZnO NPs exhibited an excellent linear range of 10–300 µM with a detection limit of 1.902 µM, quantitation limit of 6.330 µM, and sensitivity of 0.0278 µA/µM. Thus, this research suggests a facile method for the preparation of material-based ZnO NPs as a promising antiretroviral drug sensors due to their excellent electrochemical properties.
Collapse
|
2
|
Pröll J, Paar C, Taylor N, Skocic M, Freystetter A, Blaimschein A, Mayr R, Niklas N, Atzmüller S, Raml E, Wechselberger C. New aspects of the Virus Life Cycle and Clinical Utility of Next Generation Sequencing based HIV-1 Resistance Testing in the Genomic, the Proviral and the Viral Reservoir of Peripheral Blood Mononuclear Cells. Curr HIV Res 2022; 20:213-221. [PMID: 35331114 DOI: 10.2174/1570162x20666220324111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/07/2021] [Accepted: 01/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Typically, genotypic resistance testing is recommended at the start of antiretroviral therapy and is even mandatory in cases of virologic failure. The material of choice is plasma viral RNA. However, in patients with low viremia (viral load < 500 copies/ml), resistance testing by population-based sequencing is very difficult. OBJECTIVE Therefore, we aimed to investigate whether next generation sequencing (NGS) from proviral DNA and RNA could be an alternative. MATERIAL AND METHODS EDTA blood samples (n = 36) from routine clinical viral load testing were used for the study. Viral loads ranged from 96 to 390,000 copies/mL, with 100% of samples having low viremia. Distribution of subtypes A (n = 2), B (n = 16), C (n = 4), D (n = 2), G (1), CRF02 AG (n = 5), CRF01 AE (n = 5), undefined/mixed (n = 4). The extracted consensus sequences were uploaded to the Stanford HIV Drug Resistance Data Base and Geno2pheno for online analysis of drug resistance mutations and resistance factors. RESULTS A total of 2476 variants or drug resistance mutations (DRMs) were detected with Sanger sequencing, compared with 2892 variants with NGS. An average of 822/1008 variants were identified in plasma viral RNA by Sanger or NGS sequencing, 834/956 in cellular viral RNA, and 820/928 in cellular viral DNA. CONCLUSIONS Both methods are well suited for the detection of HIV substitutions or drug resistance mutations. Our results suggest that cellular RNA or cellular viral DNA is an informative alternative to plasma viral RNA for variant detection in patients with low viremia, as shown by the high correlation of variants in the different viral pools. And we show that by using UDS, a plus of two DRMs per patient becomes visible and that can make a big difference in the assessment of the expected resistance behavior of the virus.
Collapse
Affiliation(s)
- Johannes Pröll
- Center for Medical Research, Medical Faculty Johannes Kepler University, Medical Faculty, Krankenhausstraße 5, A-4020 Linz, Austria
| | - Christian Paar
- Institute of Laboratory Medicine, Kepler Universitätsklinikum, Med Campus III, Krankenhausstraße 9, A-4020 Linz, Austria
| | - Ninon Taylor
- Department of Dermatology, University Hospital of the Paracelsus Medical University, Müllner Hauptstraße 48, A-5020 Salzburg, Austria
| | - Matthias Skocic
- Department of Dermatology, Kepler Universitätsklinikum, Med Campus III, Krankenhausstraße 9, A-4020 Linz, Austria
| | - Andrea Freystetter
- Institute of Laboratory Medicine, Kepler Universitätsklinikum, Med Campus III, Krankenhausstraße 9, A-4020 Linz, Austria
| | - Anna Blaimschein
- Institute of Laboratory Medicine, Kepler Universitätsklinikum, Med Campus III, Krankenhausstraße 9, A-4020 Linz, Austria
| | - Roland Mayr
- Institute of Laboratory Medicine, Kepler Universitätsklinikum, Med Campus III, Krankenhausstraße 9, A-4020 Linz, Austria
| | - Norbert Niklas
- Red Cross Transfusion Center for Upper Austria, Krankenhausstraße 7, A-4020, Austria
| | - Sabine Atzmüller
- Center for Medical Research, Medical Faculty Johannes Kepler University, Medical Faculty, Krankenhausstraße 5, A-4020 Linz, Austria
| | - Edeltraud Raml
- Center for Medical Research, Medical Faculty Johannes Kepler University, Medical Faculty, Krankenhausstraße 5, A-4020 Linz, Austria
| | - Christian Wechselberger
- Division of Pathophysiology, Institute for Physiology and Pathophysiology, Medical Faculty, Johannes Kepler University, ADM Building, Krankenhausstraße 5, A-4020 Linz, Austria
| |
Collapse
|