1
|
Zhang M, Leong MW, Mitch WA, Blish CA, Boehm A. Persistence and free chlorine disinfection of human coronaviruses and their surrogates in water. Appl Environ Microbiol 2024; 90:e0005524. [PMID: 38511945 PMCID: PMC11022552 DOI: 10.1128/aem.00055-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The coronavirus disease 2019 pandemic illustrates the importance of understanding the behavior and control of human pathogenic viruses in the environment. Exposure via water (drinking, bathing, and recreation) is a known route of transmission of viruses to humans, but the literature is relatively void of studies on the persistence of many viruses, especially coronaviruses, in water and their susceptibility to chlorine disinfection. To fill that knowledge gap, we evaluated the persistence and free chlorine disinfection of human coronavirus OC43 (HCoV-OC43) and its surrogates, murine hepatitis virus (MHV) and porcine transmissible gastroenteritis virus (TGEV), in drinking water and laboratory buffer using cell culture methods. The decay rate constants of human coronavirus and its surrogates in water varied, depending on virus and water matrix. In drinking water without disinfectant addition, MHV showed the largest decay rate constant (estimate ± standard error, 2.25 ± 0.09 day-1) followed by HCoV-OC43 (0.99 ± 0.12 day-1) and TGEV (0.65 ± 0.06 day-1), while in phosphate buffer without disinfectant addition, HCoV-OC43 (0.51 ± 0.10 day-1) had a larger decay rate constant than MHV (0.28 ± 0.03 day-1) and TGEV (0.24 ± 0.02 day-1). Upon free chlorine disinfection, the inactivation rates of coronaviruses were independent of free chlorine concentration and were not affected by water matrix, though they still varied between viruses. TGEV showed the highest susceptibility to free chlorine disinfection with the inactivation rate constant of 113.50 ± 7.50 mg-1 min-1 L, followed by MHV (81.33 ± 4.90 mg-1 min-1 L) and HCoV-OC43 (59.42 ± 4.41 mg-1 min-1 L). IMPORTANCE This study addresses an important knowledge gap on enveloped virus persistence and disinfection in water. Results have immediate practical applications for shaping evidence-based water policies, particularly in the development of disinfection strategies for pathogenic virus control.
Collapse
Affiliation(s)
- Mengyang Zhang
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Michelle Wei Leong
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - William A. Mitch
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| | - Catherine A. Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Alexandria Boehm
- Department of Civil and Environmental Engineering, School of Engineering and Doerr School of Sustainability, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Duan X, Li H, Tan X, Liu N, Wang X, Zhang W, Liu Y, Ma W, Wu Y, Ma L, Fan Y. Polygonum cillinerve polysaccharide inhibits transmissible gastroenteritis virus by regulating microRNA-181. Vet J 2024; 304:106083. [PMID: 38365083 DOI: 10.1016/j.tvjl.2024.106083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/18/2024]
Abstract
Transmissible gastroenteritis virus (TGEV) is an important pathogen capable of altering the expression profile of cellular miRNA. In this study, the potential of Polygonum cillinerve polysaccharide (PCP) to treat TGEV-infected piglets was evaluated through in vivo experiments. High-throughput sequencing technology was employed to identify 9 up-regulated and 17 down-regulated miRNAs during PCP-mediated inhibition of TGEV infection in PK15 cells. Additionally, miR-181 was found to be associated with target genes of key proteins in the apoptosis pathway. PK15 cells were treated with various concentrations of PCP following transfection with miR-181 mimic or inhibitor. Real-time PCR assessed the impact on TGEV replication, while electron microscopy (TEM) and Hoechst fluorescence staining evaluated cellular functionality. Western blot analysis was utilized to assess the expression of key signaling factors-cytochrome C (cyt C), caspase 9, and P53-in the apoptotic signaling pathway. The results showed that compared with the control group, 250 μg/mL PCP significantly inhibited TGEV gRNA replication and gene N expression (P < 0.01). Microscopic examination revealed uniform cell morphology and fewer floating cells in PCP-treated groups (250 and 125 μg/mL). TEM analysis showed no typical virus structure in the 250 μg/mL PCP group, and apoptosis staining indicated a significant reduction in apoptotic cells at this concentration. Furthermore, PCP may inhibit TGEV-induced apoptosis via the Caspase-dependent mitochondrial pathway following miR-181 transfection. These findings provide a theoretical basis for further exploration into the mechanism of PCP's anti-TGEV properties.
Collapse
Affiliation(s)
- Xueqin Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University , Yangling 712100, PR China; Agricultural Management Department, Sichuan Xuanhan Vocational Secondary School, Xuanhan 636350, PR China
| | - Huicong Li
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University , Yangling 712100, PR China
| | - Xuewen Tan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University , Yangling 712100, PR China
| | - Nishang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University , Yangling 712100, PR China
| | - Xingchen Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University , Yangling 712100, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University , Yangling 712100, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University , Yangling 712100, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University , Yangling 712100, PR China
| | - Yi Wu
- Nanjing Agricultural University, No 1 Weigang, Nanjing 210095, PR China.
| | - Lin Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China.
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University , Yangling 712100, PR China.
| |
Collapse
|
3
|
Song Z, Yang Y, Wang L, Wang K, Ran L, Xie Y, Huang L, Yang Z, Yuan P, Yu Q. EIF4A2 interacts with the membrane protein of transmissible gastroenteritis coronavirus and plays a role in virus replication. Res Vet Sci 2018; 123:39-46. [PMID: 30583231 PMCID: PMC7111847 DOI: 10.1016/j.rvsc.2018.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 01/01/2023]
Abstract
Transmissible gastroenteritis coronavirus (TGEV) is enteropathogenic coronavirus that causes diarrhea in pigs, and is associated with high morbidity and mortality in sucking piglets. The TGEV membrane (M) protein is a decisive protein for the proliferation of viral proteins, and is associated with virus assembly and budding. To identify the cellular proteins that interact with the TGEV M protein, yeast two-hybrid screening was employed, and seven cellular proteins were identified M-binding partners. Using the GST pull-down approach and a CO-IP assay, the M protein was found to interact with porcine intestinal cells via eukaryotic translation initiation factor 4-alpha (EIF4A2), an essential component of the cellular translational machinery. Additionally, confocal microscopy revealed that EIF4A2 and M were colocalized in the cytoplasm. Furthermore, the function of EIF4A2 in intestinal cells during TGEV infection was examined. A knockdown of EIF4A2 by siRNA markedly decreased M protein proliferation and TGEV replication in target cells. Thus demonstrating that EIF4A2 plays a significant role in TGEV replication. The present study provides mechanistic insight into the interaction between the TGEV M protein and intestinal cells which contributes to the understanding of coronavirus replication and may be useful for the development of novel therapeutic strategies for TGEV infection. Yeast two-hybrid system identified seven proteins to interact with TGEV M protein. EIF4A2 was confirmed to interact with and TGEV M protein via GST-pull down and CO-IP. Immunofluorescence revealed colocalization of EIF4A2 and M protein in the cytoplasm. EIF4A2 siRNA knockdown reduced TGEV replication in porcine IECs. EIF4A2 may be associated with TGEV replication in porcine intestinal cells.
Collapse
Affiliation(s)
- Zhenhui Song
- Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing 402460, China.
| | - Yang Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing 402460, China
| | - Li Wang
- Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing 402460, China
| | - Kai Wang
- Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing 402460, China
| | - Ling Ran
- Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing 402460, China
| | - Yilu Xie
- Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing 402460, China
| | - LeiShi Huang
- Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing 402460, China
| | - Zhou Yang
- Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing 402460, China
| | - Peng Yuan
- Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing 402460, China
| | - Qiuhan Yu
- Department of Veterinary Medicine, College of Animal Science, Southwest University Chongqing People's Republic of China, Chongqing 402460, China
| |
Collapse
|
4
|
Zhang S, Hu W, Yuan L, Yang Q. Transferrin receptor 1 is a supplementary receptor that assists transmissible gastroenteritis virus entry into porcine intestinal epithelium. Cell Commun Signal 2018; 16:69. [PMID: 30342530 PMCID: PMC6196004 DOI: 10.1186/s12964-018-0283-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/11/2018] [Indexed: 12/15/2022] Open
Abstract
Background Transmissible gastroenteritis virus (TGEV), the etiologic agent of transmissible gastroenteritis, infects swine of all ages causing vomiting and diarrhea, in newborn piglets the mortality rate is near 100%. Intestinal epithelial cells are the primary target cells of TGEV. Transferrin receptor 1 (TfR1), which is highly expressed in piglets with anemia, may play a role in TGEV infection. However, the underlying mechanism of TGEV invasion remains largely unknown. Results Our study investigated the possibility that TfR1 can serve as a receptor for TGEV infection and enables the invasion and replication of TGEV. We observed that TGEV infection promoted TfR1 internalization, clustering, and co-localization with TfR1 early in infection, while TfR1 expression was significantly down-regulated as TGEV infection proceeded. TGEV infection and replication were inhibited by occluding TfR1 with antibodies or by decreasing TfR1 expression. TGEV infection increased in TGEV-susceptible ST or IPEC-J2 cell lines and TGEV-resistant Caco-2 cells when porcine TfR1 was over-expressed. Finally, we found that the TGEV S1 protein interacts with the extracellular region of TfR1, and that pre-incubating TGEV with a protein fragment containing the extracellular region of TfR1 blocked viral infection. Conclusions Our results support the hypothesis that TfR1 is an additional receptor for TGEV and assists TGEV invasion and replication. Electronic supplementary material The online version of this article (10.1186/s12964-018-0283-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Weiwei Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Lvfeng Yuan
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Qian Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Wei gang 1, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
5
|
Establishment of porcine enterocyte/myofibroblast co-cultures for the growth of porcine rota- and coronaviruses. Sci Rep 2018; 8:15195. [PMID: 30315177 PMCID: PMC6185943 DOI: 10.1038/s41598-018-33305-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/26/2018] [Indexed: 12/15/2022] Open
Abstract
A stable culture of primary porcine enterocytes is necessary to study porcine enteric virus replication characteristics. Because the direct cultivation of primary porcine enterocytes is difficult, alternatives have to be considered. As subepithelial myofibroblasts secrete extracellular matrix and growth factors contributing to the attachment, proliferation and differentiation of epithelial cells, co-cultures of primary porcine enterocytes (ileocytes and colonocytes) with myofibroblasts were developed and evaluated for their susceptibility to enteric viruses. First, it was demonstrated that the co-cultured ileocytes and colonocytes were susceptible to an archival rotavirus strain RVA/pig-tc/BEL/RV277/1977/G1P[7] and different other rotavirus genotypes (fecal samples containing G5P[7], G5P[13], G9P[23], G4P[6]). Next, the TGEV Purdue strain infected both ileocytes and colonocytes whereas the Miller strain only infected ileocytes. Last, the PEDV CV777 Vero adapted and non-adapted (fecal suspension) strains could infect co-cultured ileocytes but not colonocytes. The infectivity of the CV777 Vero adapted strain was higher when the cells were cultured without fetal bovine serum and the CV777 fecal suspension only infected the ileocytes cultured without fetal bovine serum. In conclusion, a novel co-culture of porcine enterocytes with myofibroblasts was established, which can be used for the investigation of the replication of enteric viruses.
Collapse
|