1
|
Varela de Andrade A, Sartori Pereira F, Nascimento da Silva F, Felippe da Silva G, de Lourdes Borba Magalhães M. Validation and optimization of the loop-mediated isothermal amplification (LAMP) technique for rapid detection of wheat stripe mosaic virus, a wheat-infecting pathogen. J Genet Eng Biotechnol 2024; 22:100373. [PMID: 38797547 PMCID: PMC10997836 DOI: 10.1016/j.jgeb.2024.100373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Wheat stripe mosaic virus (WhSMV) is a significant wheat pathogen that causes substantial yield losses in Brazil and other countries. Although several detection methods are available, reliable and efficient tools for on-site WhSMV detection are currently lacking. In this study, a Loop-Mediated Isothermal Amplification (LAMP) method was developed for rapid and reliable field detection of WhSMV. We designed WhSMV-specific primers for the LAMP assay and optimized reaction conditions for increased sensitivity and specificity using infected plant samples. RESULTS We have developed a diagnostic method utilizing the Loop-Mediated Isothermal Amplification (LAMP) technique capable of rapidly and reliably detecting WhSMV. The LAMP assay has been optimized to enhance sensitivity, specificity, and cost-effectiveness. CONCLUSION The LAMP assay described here represents a valuable tool for early WhSMV detection, serving to mitigate the adverse economic and social impacts of this viral pathogen. By enabling swift and accurate identification, this assay can significantly improve the sustainability of cereal production systems, safeguarding crop yields against the detrimental effects of WhSMV.
Collapse
|
2
|
Pandey S, McCoy SS, Stobdan T, Sahoo D. Quantitative mRNA expression measurement at home. Sci Rep 2024; 14:1013. [PMID: 38200031 PMCID: PMC10781964 DOI: 10.1038/s41598-023-49651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
mRNA measurement is dominated by RT-PCR, which requires expensive laboratory equipment and personnel with advanced degrees. Loop-mediated isothermal amplification (LAMP) is a versatile technique for detecting target DNA and RNA. The sensitivity of LAMP in early reports has been below that of the standard RT-PCR tests. Here, we report the use of a fluorescence-based RT-LAMP protocol to measure CDX2 expression patterns, which match extremely well to the standards of sophisticated RT-PCR techniques (r = 0.99, p < 0.001). The assay works on diverse sample types such as cDNA, mRNA, and direct tissue sample testing in 25 min compared to more than 3 h for RT-PCR. We have developed a new protocol for designing RT-LAMP primers that reduce false positives due to self-amplification and improve quantification. A simple device with a 3D-printed box enables the measurement of mRNA expression at home, outdoors, and point-of-care setting.
Collapse
Affiliation(s)
- Sonalisa Pandey
- Shanvi, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0703, Leichtag Building 132, La Jolla, CA, 92093-0703, USA
| | - Sara Safa McCoy
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0703, Leichtag Building 132, La Jolla, CA, 92093-0703, USA
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, USA
| | - Tsering Stobdan
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0703, Leichtag Building 132, La Jolla, CA, 92093-0703, USA
| | - Debashis Sahoo
- Shanvi, San Diego, CA, USA.
- Department of Pediatrics, University of California San Diego, 9500 Gilman Drive, MC 0703, Leichtag Building 132, La Jolla, CA, 92093-0703, USA.
- Department of Computer Science and Engineering, Jacob's School of Engineering, University of California San Diego, La Jolla, USA.
| |
Collapse
|
3
|
Chakraborty M, Soda N, Strachan S, Ngo CN, Bhuiyan SA, Shiddiky MJA, Ford R. Ratoon Stunting Disease of Sugarcane: A Review Emphasizing Detection Strategies and Challenges. PHYTOPATHOLOGY 2024; 114:7-20. [PMID: 37530477 DOI: 10.1094/phyto-05-23-0181-rvw] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Sugarcane (Saccharum hybrid) is an important cash crop grown in tropical and subtropical countries. Ratoon stunting disease (RSD), caused by a xylem-inhabiting bacterium, Leifsonia xyli subsp. xyli (Lxx) is one of the most economically significant diseases globally. RSD results in severe yield losses because its highly contagious nature and lack of visually identifiable symptoms make it harder to devise an effective management strategy. The efficacy of current management practices is hindered by implementation difficulties caused by lack of resources, high cost, and difficulties in monitoring. Rapid detection of the causal pathogen in vegetative planting material is crucial for sugarcane growers to manage this disease. Several microscopic, serological, and molecular-based methods have been developed and used for detecting the RSD pathogen. Although these methods have been used across the sugarcane industry worldwide to diagnose Lxx, some lack reliability or specificity, are expensive and time-consuming to apply, and most of all, are not suitable for on-farm diagnosis. In recent decades, there has been significant progress in the development of integrated isothermal amplification-based microdevices for accurate human and plant pathogen detection. There is a significant opportunity to develop a novel diagnostic method that integrates nanobiosensing with isothermal amplification within a microdevice format for accurate Lxx detection. In this review, we summarize (i) the historical background and current knowledge of sugarcane ratoon stunting disease, including some aspects related to transmission, pathosystem, and management practices; and (ii) the drawbacks of current diagnostic methods and the potential for application of advanced diagnostics to improve disease management.
Collapse
Affiliation(s)
- Moutoshi Chakraborty
- Centre for Planetary Health and Food Security (CPHFS), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
| | - Narshone Soda
- Queensland Micro and Nanotechnology Centre (QMNC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
| | - Simon Strachan
- School of Environment and Science (ESC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
| | - Chuong N Ngo
- Sugar Research Australia (SRA), Indooroopilly, QLD 4068, Australia
| | - Shamsul A Bhuiyan
- Queensland Micro and Nanotechnology Centre (QMNC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- Sugar Research Australia (SRA), 90 Old Cove Road, Woodford, QLD 4514, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science (ESC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- Queensland Micro and Nanotechnology Centre (QMNC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- Rural Health Research Institute (RHRI), Charles Sturt University, Orange NSW 2800, Australia
| | - Rebecca Ford
- Centre for Planetary Health and Food Security (CPHFS), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- School of Environment and Science (ESC), Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
| |
Collapse
|
4
|
Ren WC, Wang SJ, Wang ZQ, Zhu MQ, Zhang YH, Lian S, Li BH, Dong XL, Liu N. Detection of Cytb Point Mutation (G143A) that Confers High-Level Resistance to Pyraclostrobin in Glomerella cingulata Using LAMP Method. PLANT DISEASE 2023; 107:1166-1171. [PMID: 36205690 DOI: 10.1094/pdis-08-22-1992-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glomerella leaf spot (GLS) caused by Glomerella cingulata is a newly emerging disease that results in severe defoliation and fruit spots in apples. In China, the compound of pyraclostrobin and tebuconazole was registered to control GLS in 2018 and has achieved excellent control efficiency. In this study, we showed that the high-level resistant isolates of G. cingulata to pyraclostrobin, caused by the point mutation at codon 143 (GGT→GCT, G143A) in the cytochrome b gene, has appeared in apple orchards in Shandong Province in 2020, and the resistance frequency was 4.8%. Based on the genotype of the resistant isolates, we developed a loop-mediated isothermal amplification (LAMP) assay for detection of the pyraclostrobin resistance. The LAMP assay was demonstrated to have good specificity, sensitivity, and repeatability, and it exhibited high accuracy in detecting pyraclostrobin resistance in the field. This study reported the resistance status of GLS to pyraclostrobin in Shandong Province and developed a molecular tool for the detection of pyraclostrobin resistance, which is of practical significance for the scientific control of GLS.
Collapse
Affiliation(s)
- Wei-Chao Ren
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Si-Jia Wang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Zhong-Qiang Wang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Mei-Qi Zhu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yi-Han Zhang
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Sen Lian
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Bao-Hua Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiang-Li Dong
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Na Liu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
5
|
Uchiyama S, Imamura Y, Matsuura T. A thermal cycler-based, homogenization-free plant total nucleic acid extraction method for plant viruses and viroids assay. J Virol Methods 2023; 313:114666. [PMID: 36539042 DOI: 10.1016/j.jviromet.2022.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
In this study, we report a plant total nucleic acid (TNA) extraction method for nucleic acid (NA)-based assays of plant viruses and viroids. This method combines NA release by incubating sliced plant tissue in solution and NA purification using silica spin column. The method is performed using a thermal cycler and microcentrifuge and does not involve tissue homogenization. For a wide range of plant species, TNA can be extracted from petioles, midribs, and stems, in 30 min. PCR/RT-PCR assays using extracts from this method detected all three DNA viruses, 14 RNA viruses, and 4 viroids tested and plant internal controls were also available. This method does not involve hazardous chemicals, is cost-effective. The method is readily implemented in various laboratories, a simple, rapid, and labor-saving option for NA-based assays of plant viruses and viroids.
Collapse
Affiliation(s)
- Shuichi Uchiyama
- Narita Sub-station, Yokohama Plant Protection Station, 2159, Aza Tennamino, Komaino, Narita 282-0021, Japan.
| | - Yuya Imamura
- Tsukuba Farm, Yokohama Plant Protection Station, 1-7, Nagamine, Tsukuba 305-0052, Japan
| | - Takayuki Matsuura
- Research Division, Yokohama Plant Protection Station, 1-16-10, Shin Yamashita, Naka-ku, Yokohama 231-0801, Japan
| |
Collapse
|
6
|
Development of a RT-LAMP assay for real-time detection of criniviruses infecting tomato. J Virol Methods 2023; 312:114662. [PMID: 36455691 DOI: 10.1016/j.jviromet.2022.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 11/30/2022]
Abstract
Yellowing symptoms caused by tomato chlorosis virus (ToCV) and tomato infectious chlorosis virus (TICV), both assigned to the genus Crinivirus, resemble nutrient deficiencies. Therefore, early diagnosis of infections will prevent crop damage and the spread of the viruses. In this study, we established a rapid detection method for ToCV and TICV by reverse transcription-loop-mediated isothermal amplification (RT-LAMP). We first designed primer sets for RT-LAMP specific for ToCV and TICV. Next, by selecting the optimum primer set and determining the optimum conditions for the RT-LAMP reaction, each virus was detected within 50 min by piercing the diseased area of a tomato leaf with a toothpick, immersing the toothpick in the reaction solution, and conducting the RT-LAMP reaction. To verify the accuracy of the procedure, 61 tomato leaf samples showing disease symptoms were collected from five regions of Indonesia, and the RT-LAMP results for the samples were identical to those obtained with the commonly used reverse transcription-polymerase chain reaction.
Collapse
|
7
|
Rapid and precise detection of cryptic tea pathogen Exobasidium vexans: RealAmp validation of LAMP approach. World J Microbiol Biotechnol 2022; 39:52. [PMID: 36564678 DOI: 10.1007/s11274-022-03506-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022]
Abstract
This work embodies the development of a real time loop mediated isothermal amplification (RealAmp) assay for the rapid detection of the cryptic tea phytopathogen, Exobasidium vexans, the causal organism of blister blight disease. Due to the widespread popularity of tea as a beverage and the associated agro-economy, the rapid detection and management of the fast-spreading blister blight disease have been a longstanding necessity. Loop-mediated isothermal amplification (LAMP) primers were designed targeting the E. vexans ITS rDNA region and the reaction temperature was optimized at 62 °C with a 60 min reaction time. Amplification of the E. vexans isolates in the initial LAMP reactions was confirmed by both agarose gel electrophoresis and SYBR Green I dye based colour change visualization. The specificity of the LAMP primers for E. vexans was validated by negative testing of seven different phytopathogenic test fungi using LAMP and RealAmp assay. The positive findings in RealAmp assay for E. vexans strain were corroborated via detecting fluorescence signals in real-time. Further, the LAMP assays performed with gDNA isolated from infected tea leaves revealed positive amplification for the presence of E. vexans. The results demonstrate that this rapid and precise RealAmp assay has the potential to be applied for field-based detection of E. vexans in real-time.
Collapse
|
8
|
Mthethwa NP, Amoah ID, Reddy P, Bux F, Kumari S. Fluorescence and colorimetric LAMP-based real-time detection of human pathogenic Cryptosporidium spp. from environmental samples. Acta Trop 2022; 235:106606. [DOI: 10.1016/j.actatropica.2022.106606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/01/2022]
|
9
|
Gomez-Gutierrez SV, Goodwin SB. Loop-Mediated Isothermal Amplification for Detection of Plant Pathogens in Wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2022; 13:857673. [PMID: 35371152 PMCID: PMC8965322 DOI: 10.3389/fpls.2022.857673] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 05/31/2023]
Abstract
Wheat plants can be infected by a variety of pathogen species, with some of them causing similar symptoms. For example, Zymoseptoria tritici and Parastagonospora nodorum often occur together and form the Septoria leaf blotch complex. Accurate detection of wheat pathogens is essential in applying the most appropriate disease management strategy. Loop-mediated isothermal amplification (LAMP) is a recent molecular technique that was rapidly adopted for detection of plant pathogens and can be implemented easily for detection in field conditions. The specificity, sensitivity, and facility to conduct the reaction at a constant temperature are the main advantages of LAMP over immunological and alternative nucleic acid-based methods. In plant pathogen detection studies, LAMP was able to differentiate related fungal species and non-target strains of virulent species with lower detection limits than those obtained with PCR. In this review, we explain the amplification process and elements of the LAMP reaction, and the variety of techniques for visualization of the amplified products, along with their advantages and disadvantages compared with alternative isothermal approaches. Then, a compilation of analyses that show the application of LAMP for detection of fungal pathogens and viruses in wheat is presented. We also describe the modifications included in real-time and multiplex LAMP that reduce common errors from post-amplification detection in traditional LAMP assays and allow discrimination of targets in multi-sample analyses. Finally, we discuss the utility of LAMP for detection of pathogens in wheat, its limitations, and current challenges of this technique. We provide prospects for application of real-time LAMP and multiplex LAMP in the field, using portable devices that measure fluorescence and turbidity, or facilitate colorimetric detection. New technologies for detection of plant pathogen are discussed that can be integrated with LAMP to obtain elevated analytical sensitivity of detection.
Collapse
|
10
|
One-Enzyme RTX-PCR for the Detection of RNA Viruses from Multiple Virus Genera and Crop Plants. Viruses 2022; 14:v14020298. [PMID: 35215892 PMCID: PMC8924886 DOI: 10.3390/v14020298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022] Open
Abstract
Reverse transcription PCR (RT-PCR) is a popular method for detecting RNA viruses in plants. RT-PCR is usually performed in a classical two-step procedure: in the first step, cDNA is synthesized by reverse transcriptase (RT), followed by PCR amplification by a thermostable polymerase in a separate tube in the second step. However, one-step kits containing multiple enzymes optimized for RT and PCR amplification in a single tube can also be used. Here, we describe an RT-PCR single-enzyme assay based on an RTX DNA polymerase that has both RT and polymerase activities. The expression plasmid pET_RTX_(exo-) was transferred to various E. coli genotypes that either compensated for codon bias (Rosetta-gami 2) or contained additional chaperones to promote solubility (BL21 (DE3) with plasmids pKJE8 or pTf2). The RTX enzyme was then purified and used for the RT-PCR assay. Several purified plant viruses (TMV, PVX, and PVY) were used to determine the efficiency of the assay compared to a commercial one-step RT-PCR kit. The RT-PCR assay with the RTX enzyme was validated for the detection of viruses from different genera using both total RNA and crude sap from infected plants. The detection endpoint of RTX-PCR for purified TMV was estimated to be approximately 0.01 pg of the whole virus per 25 µL reaction, corresponding to 6 virus particles/µL. Interestingly, the endpoint for detection of TMV from crude sap was also 0.01 pg per reaction in simulated crude plant extracts. The longest RNA fragment that could be amplified in a one-tube arrangement was 2379 bp long. The longest DNA fragment that could be amplified during a 10s extension was 6899 bp long. In total, we were able to detect 13 viruses from 11 genera using RTX-PCR. For each virus, two to three specific fragments were amplified. The RT-PCR assay using the RTX enzyme described here is a very robust, inexpensive, rapid, easy to perform, and sensitive single-enzyme assay for the detection of plant viruses.
Collapse
|
11
|
Latent potential of current plant diagnostics for detection of sugarcane diseases. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
12
|
Ivanov AV, Safenkova IV, Zherdev AV, Dzantiev BB. The Potential Use of Isothermal Amplification Assays for In-Field Diagnostics of Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112424. [PMID: 34834787 PMCID: PMC8621059 DOI: 10.3390/plants10112424] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 05/27/2023]
Abstract
Rapid, sensitive, and timely diagnostics are essential for protecting plants from pathogens. Commonly, PCR techniques are used in laboratories for highly sensitive detection of DNA/RNA from viral, viroid, bacterial, and fungal pathogens of plants. However, using PCR-based methods for in-field diagnostics is a challenge and sometimes nearly impossible. With the advent of isothermal amplification methods, which provide amplification of nucleic acids at a certain temperature and do not require thermocyclic equipment, going beyond the laboratory has become a reality for molecular diagnostics. The amplification stage ceases to be limited by time and instruments. Challenges to solve involve finding suitable approaches for rapid and user-friendly plant preparation and detection of amplicons after amplification. Here, we summarize approaches for in-field diagnostics of phytopathogens based on different types of isothermal amplification and discuss their advantages and disadvantages. In this review, we consider a combination of isothermal amplification methods with extraction and detection methods compatible with in-field phytodiagnostics. Molecular diagnostics in out-of-lab conditions are of particular importance for protecting against viral, bacterial, and fungal phytopathogens in order to quickly prevent and control the spread of disease. We believe that the development of rapid, sensitive, and equipment-free nucleic acid detection methods is the future of phytodiagnostics, and its benefits are already visible.
Collapse
|
13
|
Siegieda DG, Panek J, Frąc M. "Shining a LAMP" (Loop-Mediated Isothermal Amplification) on the Molecular Detection of Phytopathogens Phytophthora spp. and Phytophthora cactorum in Strawberry Fields. Pathogens 2021; 10:pathogens10111453. [PMID: 34832609 PMCID: PMC8619305 DOI: 10.3390/pathogens10111453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
Phytopathogenic microorganisms belonging to the genus Phytophthora have been recognized many times as causal agents of diseases that lower the yield of many plants important for agriculture. Meanwhile, Phytophthora cactorum causes crown rot and leather rot of berry fruits, mainly strawberries. However, widely-applied culture-based methods used for the detection of pathogens are time-consuming and often inaccurate. What is more, molecular techniques require costly equipment. Here we show a rapid and effective detection method for the aforementioned targets, deploying a simple molecular biology technique, Loop-Mediated Isothermal Amplification (LAMP). We optimized assays to amplify the translation elongation factor 1-α (EF1a) gene for two targets: Phytophthora spp. And Phytophthora cactorum. We optimized the LAMP on pure strains of the pathogens, isolated from organic plantations of strawberry, and successfully validated the assay on biological material from the environment including soil samples, rhizosphere, shoots and roots of strawberry, and with SYBR Green. Our results demonstrate that a simple and reliable molecular detection method, that requires only a thermoblock and simple DNA isolation kit, can be successfully applied to detect pathogens that are difficult to separate from the field. We anticipate our findings to be a starting point for developing easier and faster modifications of the isothermal detection methods and which can be applied directly in the plantation, in particular with the use of freeze-dried reagents and chemistry, allowing observation of the results with the naked eye.
Collapse
|
14
|
Ali Z, Mahfouz MM. CRISPR/Cas systems versus plant viruses: engineering plant immunity and beyond. PLANT PHYSIOLOGY 2021; 186:1770-1785. [PMID: 35237805 PMCID: PMC8331158 DOI: 10.1093/plphys/kiab220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 05/02/2023]
Abstract
Molecular engineering of plant immunity to confer resistance against plant viruses holds great promise for mitigating crop losses and improving plant productivity and yields, thereby enhancing food security. Several approaches have been employed to boost immunity in plants by interfering with the transmission or lifecycles of viruses. In this review, we discuss the successful application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (CRISPR/Cas) systems to engineer plant immunity, increase plant resistance to viruses, and develop viral diagnostic tools. Furthermore, we examine the use of plant viruses as delivery systems to engineer virus resistance in plants and provide insight into the limitations of current CRISPR/Cas approaches and the potential of newly discovered CRISPR/Cas systems to engineer better immunity and develop better diagnostics tools for plant viruses. Finally, we outline potential solutions to key challenges in the field to enable the practical use of these systems for crop protection and viral diagnostics.
Collapse
Affiliation(s)
- Zahir Ali
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Author for communication:
| |
Collapse
|
15
|
Lavanya R, Arun V. Detection of Begomovirus in chilli and tomato plants using functionalized gold nanoparticles. Sci Rep 2021; 11:14203. [PMID: 34244585 PMCID: PMC8271019 DOI: 10.1038/s41598-021-93615-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Begomoviruses are a major class of Geminiviruses that affects most dicotyledonous plants and causes heavy economic losses to farmers. Early detection of begomovirus is essential to control the spread of the disease and prevent loss. Many available detection methods like ELISA, immunosorbent electron microscopy, PCR or qPCR require expertise in handling sophisticated instruments, complex data interpretation and costlier chemicals, enzymes or antibodies. Hence there is a need for a simpler detection method, here we report the development of a visual detection method based on functionalized gold nanoparticles (AuNP assay). The assay was able to detect up to 500 ag/µl of begomoviral DNA (pTZCCPp3, a clone carrying partial coat protein gene) suspended in MilliQ water. Screening of chilli plants for begomoviral infection by PCR (Deng primers) and AuNP assay showed that AuNP assay (77.7%) was better than PCR (49.4%). The AuNP assay with clccpi1 probe was able to detect begomoviral infection in chilli, tomato, common bean, green gram and black gram plants which proved the utility and versatility of the AuNP assay. The specificity of the assay was demonstrated by testing with total DNA from different plants that are not affected by begomoviruses.
Collapse
Affiliation(s)
- R. Lavanya
- grid.412734.70000 0001 1863 5125Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu India
| | - V. Arun
- grid.412734.70000 0001 1863 5125Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu India
| |
Collapse
|
16
|
Rafiq A, Ali WR, Asif M, Ahmed N, Khan WS, Mansoor S, Bajwa SZ, Amin I. Development of a LAMP assay using a portable device for the real-time detection of cotton leaf curl disease in field conditions. Biol Methods Protoc 2021; 6:bpab010. [PMID: 34084942 PMCID: PMC8164779 DOI: 10.1093/biomethods/bpab010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Cotton production is seriously affected by the prevalent cotton leaf curl disease (CLCuD) that originated from Nigeria (Africa) to various parts of Asia including Pakistan, India, China and Philippines. Due to CLCuD, Pakistan suffers heavy losses approximately 2 billion USD per annum. Numerous reports showed that CLCuD is associated with multiple species of begomoviruses, alphasatellites and a single species of betasatellite, that is ‘Cotton leaf curl Multan betasatellite’ (CLCuMuB). The most prevalent form of CLCuD is the combination of ‘Cotton leaf curl Kokhran virus’-Burewala strain (CLCuKoV-Bur) and CLCuMuB. Thus, the availability of an in-field assay for the timely detection of CLCuD is important for the control and management of the disease. In this study, a robust method using the loop-mediated isothermal amplification (LAMP) assay was developed for the detection of CLCuD. Multiple sets of six primers were designed based on the conserved regions of CLCuKoV-Bur and CLCuMuB-βC1 genes. The results showed that the primer set targeting the CLCuMuB-βC1 gene performed best when the LAMP assay was performed at 58°C using 100 ng of total plant tissue DNA as a template in a 25 µl reaction volume. The limit of detection for the assay was as low as 22 copies of total purified DNA template per reaction. This assay was further adapted to perform as a colorimetric and real-time LAMP assay which proved to be advantageously applied for the rapid and early point-of-care detection of CLCuD in the field. Application of the assay could help to prevent the huge economic losses caused by the disease and contribute to the socio-economic development of underdeveloped countries.
Collapse
Affiliation(s)
- Amna Rafiq
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 44000, Pakistan
| | - Waqas Rafique Ali
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan
| | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan
| | - Nasim Ahmed
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 44000, Pakistan
| | - Waheed S Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan
| | - Sadia Zafar Bajwa
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box No. 577, Jhang Road, Faisalabad 38000, Pakistan
| |
Collapse
|
17
|
Katoh H, Yamazaki S, Fukuda T, Sonoda S, Nishigawa H, Natsuaki T. Detection of Fusarium oxysporum f. sp. fragariae by Using Loop-Mediated Isothermal Amplification. PLANT DISEASE 2021; 105:1072-1079. [PMID: 32897153 DOI: 10.1094/pdis-03-20-0590-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We developed a loop-mediated isothermal amplification (LAMP) assay for detecting Fusarium oxysporum f. sp. fragariae, the causal agent of wilt in strawberry plants. This assay was based on genomic regions between the portions of transposable elements Han and Skippy of the fungus. The LAMP assay allowed the efficient detection of F. oxysporum f. sp. fragariae DNA by visual inspection, without requiring gel electrophoresis. The detection limit was 100 pg of genomic DNA, which is comparable to that of PCR. The LAMP primers successfully discriminated F. oxysporum f. sp. fragariae strains from nonpathogenic F. oxysporum strains and other fungi. The LAMP assay at 63°C, which was found to be the optimal treatment temperature, for 1.5 h successfully detected F. oxysporum f. sp. fragariae California strains GL1270 and GL1385. When the assay was performed using a Genelyzer FIII portable fluorometer, these California strains were successfully detected in 1 h. The assay facilitated the detection of conidia in soil samples after they were precultured on a selective medium for F. oxysporum (FoG2) as well as latent infection in strawberry plants after preculturing. The LAMP assay for visual inspection of DNA required only a heating block and an incubator, reducing the cost of this assay. Thus, it could be suitable for the detection of F. oxysporum f. sp. fragariae strains in centers that store prefoundation and foundation stocks of strawberry, including plant nurseries.
Collapse
Affiliation(s)
- Hiroshi Katoh
- Faculty of Agriculture, Takasaki University of Health and Welfare, Takasaki, Gunma 370-0033, Japan
| | - Shuichiro Yamazaki
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi 320-0002, Japan
| | - Takashi Fukuda
- Tochigi Prefectural Agricultural Experiment Station, Utsunomiya, Tochigi 320-0002, Japan
| | - Shoji Sonoda
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Hisashi Nishigawa
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| | - Tomohide Natsuaki
- Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan
| |
Collapse
|
18
|
Current Developments and Challenges in Plant Viral Diagnostics: A Systematic Review. Viruses 2021; 13:v13030412. [PMID: 33807625 PMCID: PMC7999175 DOI: 10.3390/v13030412] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 12/24/2022] Open
Abstract
Plant viral diseases are the foremost threat to sustainable agriculture, leading to several billion dollars in losses every year. Many viruses infecting several crops have been described in the literature; however, new infectious viruses are emerging frequently through outbreaks. For the effective treatment and prevention of viral diseases, there is great demand for new techniques that can provide accurate identification on the causative agents. With the advancements in biochemical and molecular biology techniques, several diagnostic methods with improved sensitivity and specificity for the detection of prevalent and/or unknown plant viruses are being continuously developed. Currently, serological and nucleic acid methods are the most widely used for plant viral diagnosis. Nucleic acid-based techniques that amplify target DNA/RNA have been evolved with many variants. However, there is growing interest in developing techniques that can be based in real-time and thus facilitate in-field diagnosis. Next-generation sequencing (NGS)-based innovative methods have shown great potential to detect multiple viruses simultaneously; however, such techniques are in the preliminary stages in plant viral disease diagnostics. This review discusses the recent progress in the use of NGS-based techniques for the detection, diagnosis, and identification of plant viral diseases. New portable devices and technologies that could provide real-time analyses in a relatively short period of time are prime important for in-field diagnostics. Current development and application of such tools and techniques along with their potential limitations in plant virology are likewise discussed in detail.
Collapse
|
19
|
Prasannakumar MK, Parivallal PB, Pramesh D, Mahesh HB, Raj E. LAMP-based foldable microdevice platform for the rapid detection of Magnaporthe oryzae and Sarocladium oryzae in rice seed. Sci Rep 2021; 11:178. [PMID: 33420312 PMCID: PMC7794292 DOI: 10.1038/s41598-020-80644-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/24/2020] [Indexed: 11/11/2022] Open
Abstract
Rice blast (caused by Magnaporthe oryzae) and sheath rot diseases (caused by Sarocladium oryzae) are the most predominant seed-borne pathogens of rice. The detection of both pathogens in rice seed is essential to avoid production losses. In the present study, a microdevice platform was designed, which works on the principles of loop-mediated isothermal amplification (LAMP) to detect M. oryzae and S. oryzae in rice seeds. Initially, a LAMP, polymerase chain reaction (PCR), quantitative PCR (qPCR), and helicase dependent amplification (HDA) assays were developed with primers, specifically targeting M. oryzae and S. oryzae genome. The LAMP assay was highly efficient and could detect the presence of M. oryzae and S. oryzae genome at a concentration down to 100 fg within 20 min at 60 °C. Further, the sensitivity of the LAMP, HDA, PCR, and qPCR assays were compared wherein; the LAMP assay was highly sensitive up to 100 fg of template DNA. Using the optimized LAMP assay conditions, a portable foldable microdevice platform was developed to detect M. oryzae and S. oryzae in rice seeds. The foldable microdevice assay was similar to that of conventional LAMP assay with respect to its sensitivity (up to 100 fg), rapidity (30 min), and specificity. This platform could serve as a prototype for developing on-field diagnostic kits to be used at the point of care centers for the rapid diagnosis of M. oryzae and S. oryzae in rice seeds. This is the first study to report a LAMP-based foldable microdevice platform to detect any plant pathogens.
Collapse
Affiliation(s)
- M K Prasannakumar
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore, India.
| | - P Buela Parivallal
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore, India
| | - Devanna Pramesh
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, India.
| | - H B Mahesh
- Department of Genetics and Plant Breeding, College of Agriculture, V.C. Farm, Mandya, India
| | - Edwin Raj
- Plant Pathology Division, ICAR - National Research Center for Banana, Thayanur, India
| |
Collapse
|
20
|
Tembo M, Adediji AO, Bouvaine S, Chikoti PC, Seal SE, Silva G. A quick and sensitive diagnostic tool for detection of Maize streak virus. Sci Rep 2020; 10:19633. [PMID: 33184360 PMCID: PMC7661706 DOI: 10.1038/s41598-020-76612-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/29/2020] [Indexed: 11/09/2022] Open
Abstract
Maize streak virus disease (MSVD), caused by Maize streak virus (MSV; genus Mastrevirus), is one of the most severe and widespread viral diseases that adversely reduces maize yield and threatens food security in Africa. An effective control and management of MSVD requires robust and sensitive diagnostic tests capable of rapid detection of MSV. In this study, a loop-mediated isothermal amplification (LAMP) assay was designed for the specific detection of MSV. This test has shown to be highly specific and reproducible and able to detect MSV in as little as 10 fg/µl of purified genomic DNA obtained from a MSV-infected maize plant, a sensitivity 105 times higher to that obtained with polymerase chain reaction (PCR) in current general use. The high degree of sequence identity between Zambian and other African MSV isolates indicate that this LAMP assay can be used for detecting MSV in maize samples from any region in Africa. Furthermore, this assay can be adopted in minimally equipped laboratories and with potential use in plant clinic laboratories across Africa strengthening diagnostic capacity in countries dealing with MSD.
Collapse
Affiliation(s)
- Mathias Tembo
- Zambia Agriculture Research Institute, Mount Makulu Research Station, P/Bag 7, Lusaka, Zambia.
| | - Adedapo O Adediji
- Department of Crop Protection and Environmental Biology, Faculty of Agriculture, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Sophie Bouvaine
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, Kent, UK
| | - Patrick C Chikoti
- Zambia Agriculture Research Institute, Mount Makulu Research Station, P/Bag 7, Lusaka, Zambia
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, Kent, UK
| | - Gonҫalo Silva
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, ME4 4TB, Kent, UK
| |
Collapse
|
21
|
Complete Genome Sequence of a Pepper Yellow Leaf Curl Indonesia Virus Isolated from Tomato in Bali, Indonesia. Microbiol Resour Announc 2020; 9:9/25/e00486-20. [PMID: 32554790 PMCID: PMC7303410 DOI: 10.1128/mra.00486-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report a complete genome sequence of a pepper yellow leaf curl Indonesia virus (PepYLCIV) isolated in Bali, Indonesia. This virus shares around 90% identity with other PepYLCIV DNA-As and 86% identity with DNA-Bs, suggesting that it is a novel isolate of PepYLCIV. We report a complete genome sequence of a pepper yellow leaf curl Indonesia virus (PepYLCIV) isolated in Bali, Indonesia. This virus shares around 90% identity with other PepYLCIV DNA-As and 86% identity with DNA-Bs, suggesting that it is a novel isolate of PepYLCIV.
Collapse
|
22
|
Griffioen K, Cornelissen J, Heuvelink A, Adusei D, Mevius D, Jan van der Wal F. Development and evaluation of 4 loop-mediated isothermal amplification assays to detect mastitis-causing bacteria in bovine milk samples. J Dairy Sci 2020; 103:8407-8420. [PMID: 32564949 DOI: 10.3168/jds.2019-18035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Farmers prefer fast, sensitive, and on-site tests for treatment decisions on mastitis. Due to the time to results of the currently available diagnostic tools, these are rarely used for that purpose. Genotypic tests that do not require a growth step may be suitable for on-site testing, for example loop-mediated isothermal amplification (LAMP), which has been described as a sensitive test that can be used on-site. Therefore, this study aimed to develop and evaluate LAMP assays for the detection of a subset of mastitis-causing pathogens, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, and Streptococcus spp., in milk from cows with clinical mastitis. Furthermore, a generic nucleic acid lateral flow immunoassay (NALFIA) was evaluated as a potential on-site readout of the LAMP assays. For each assay of LAMP and NALFIA, the limit of detection and analytical specificity were determined using isolates, and the diagnostic specificity was determined using selected samples with known etiology. In addition, the diagnostic specificity of LAMP was determined using field samples with unknown etiology at testing. Bacteriological culture with identification by mass spectrometry was used as a reference method. The 4 assays had a kappa ≥0.73 with the reference method when testing the selected samples, but ≥0.47 when testing field samples. After correcting for prevalence, kappa was ≥0.80 for the E. coli, K. pneumoniae, and Staph. aureus assays. The Streptococcus spp. assay had a kappa of 0.47 (0.48 after correction) with the reference method, probably caused by the assay broadly targeting a genus instead of a particular species. The NALFIA readout was found to have kappa ≥0.81 for the E. coli, Staph. aureus, and Streptococcus spp. assays at a generic runtime, but for the K. pneumoniae assay a shorter runtime could be used. In conclusion, LAMP is a promising method for fast on-site tests for mastitis-causing pathogens if the current elaborate method for sample preparation is replaced by a simplified protocol. The NALFIA is an easy and reliable readout for on-site use, with the observation that for the current assay designs a generic runtime is not yet possible for the chosen set of pathogens. If associated with a simple and fast sample preparation protocol, the combination of LAMP and NALFIA has the potential to enable fast and reliable on-site testing of clinical mastitis milk samples.
Collapse
Affiliation(s)
- Karien Griffioen
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Utrecht University, PO Box 80151, 3508 TD Utrecht, the Netherlands.
| | - Jan Cornelissen
- Wageningen Bioveterinary Research, Department of Infection Biology, Wageningen UR, PO Box 65, 8200 AB Lelystad, the Netherlands
| | | | - Daniela Adusei
- Wageningen Bioveterinary Research, Department of Infection Biology, Wageningen UR, PO Box 65, 8200 AB Lelystad, the Netherlands
| | - Dik Mevius
- Wageningen Bioveterinary Research, Department of Infection Biology, Wageningen UR, PO Box 65, 8200 AB Lelystad, the Netherlands; Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, PO Box 80165, 3508 TD Utrecht, the Netherlands
| | - Fimme Jan van der Wal
- Wageningen Bioveterinary Research, Department of Infection Biology, Wageningen UR, PO Box 65, 8200 AB Lelystad, the Netherlands
| | | |
Collapse
|
23
|
Panno S, Matić S, Tiberini A, Caruso AG, Bella P, Torta L, Stassi R, Davino S. Loop Mediated Isothermal Amplification: Principles and Applications in Plant Virology. PLANTS (BASEL, SWITZERLAND) 2020; 9:E461. [PMID: 32268586 PMCID: PMC7238132 DOI: 10.3390/plants9040461] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 01/14/2023]
Abstract
In the last decades, the evolution of molecular diagnosis methods has generated different advanced tools, like loop-mediated isothermal amplification (LAMP). Currently, it is a well-established technique, applied in different fields, such as the medicine, agriculture, and food industries, owing to its simplicity, specificity, rapidity, and low-cost efforts. LAMP is a nucleic acid amplification under isothermal conditions, which is highly compatible with point-of-care (POC) analysis and has the potential to improve the diagnosis in plant protection. The great advantages of LAMP have led to several upgrades in order to implement the technique. In this review, the authors provide an overview reporting in detail the different LAMP steps, focusing on designing and main characteristics of the primer set, different methods of result visualization, evolution and different application fields, reporting in detail LAMP application in plant virology, and the main advantages of the use of this technique.
Collapse
Affiliation(s)
- Stefano Panno
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (A.G.C.); (P.B.); (L.T.); (R.S.)
| | - Slavica Matić
- Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Turin, Italy;
| | - Antonio Tiberini
- Council for Agricultural Research and Economics, Research Center for Plant Protection and Certification, 00156 Rome, Italy;
| | - Andrea Giovanni Caruso
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (A.G.C.); (P.B.); (L.T.); (R.S.)
| | - Patrizia Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (A.G.C.); (P.B.); (L.T.); (R.S.)
| | - Livio Torta
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (A.G.C.); (P.B.); (L.T.); (R.S.)
| | - Raffaele Stassi
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (A.G.C.); (P.B.); (L.T.); (R.S.)
| | - Salvatore Davino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy; (A.G.C.); (P.B.); (L.T.); (R.S.)
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), 10135 Turin, Italy
| |
Collapse
|
24
|
Baldi P, La Porta N. Molecular Approaches for Low-Cost Point-of-Care Pathogen Detection in Agriculture and Forestry. FRONTIERS IN PLANT SCIENCE 2020; 11:570862. [PMID: 33193502 PMCID: PMC7655913 DOI: 10.3389/fpls.2020.570862] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/29/2020] [Indexed: 05/14/2023]
Abstract
Early detection of plant diseases is a crucial factor to prevent or limit the spread of a rising infection that could cause significant economic loss. Detection test on plant diseases in the laboratory can be laborious, time consuming, expensive, and normally requires specific technical expertise. Moreover, in the developing countries, it is often difficult to find laboratories equipped for this kind of analysis. Therefore, in the past years, a high effort has been made for the development of fast, specific, sensitive, and cost-effective tests that can be successfully used in plant pathology directly in the field by low-specialized personnel using minimal equipment. Nucleic acid-based methods have proven to be a good choice for the development of detection tools in several fields, such as human/animal health, food safety, and water analysis, and their application in plant pathogen detection is becoming more and more common. In the present review, the more recent nucleic acid-based protocols for point-of-care (POC) plant pathogen detection and identification are described and analyzed. All these methods have a high potential for early detection of destructive diseases in agriculture and forestry, they should help make molecular detection for plant pathogens accessible to anyone, anywhere, and at any time. We do not suggest that on-site methods should replace lab testing completely, which remains crucial for more complex researches, such as identification and classification of new pathogens or the study of plant defense mechanisms. Instead, POC analysis can provide a useful, fast, and efficient preliminary on-site screening that is crucial in the struggle against plant pathogens.
Collapse
Affiliation(s)
- Paolo Baldi
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- *Correspondence: Paolo Baldi,
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- The EFI Project Centre on Mountain Forests (MOUNTFOR), San Michele a/Adige, Trento, Italy
| |
Collapse
|
25
|
Rubio L, Galipienso L, Ferriol I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:1092. [PMID: 32765569 PMCID: PMC7380168 DOI: 10.3389/fpls.2020.01092] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
Plant viruses cause considerable economic losses and are a threat for sustainable agriculture. The frequent emergence of new viral diseases is mainly due to international trade, climate change, and the ability of viruses for rapid evolution. Disease control is based on two strategies: i) immunization (genetic resistance obtained by plant breeding, plant transformation, cross-protection, or others), and ii) prophylaxis to restrain virus dispersion (using quarantine, certification, removal of infected plants, control of natural vectors, or other procedures). Disease management relies strongly on a fast and accurate identification of the causal agent. For known viruses, diagnosis consists in assigning a virus infecting a plant sample to a group of viruses sharing common characteristics, which is usually referred to as species. However, the specificity of diagnosis can also reach higher taxonomic levels, as genus or family, or lower levels, as strain or variant. Diagnostic procedures must be optimized for accuracy by detecting the maximum number of members within the group (sensitivity as the true positive rate) and distinguishing them from outgroup viruses (specificity as the true negative rate). This requires information on the genetic relationships within-group and with members of other groups. The influence of the genetic diversity of virus populations in diagnosis and disease management is well documented, but information on how to integrate the genetic diversity in the detection methods is still scarce. Here we review the techniques used for plant virus diagnosis and disease control, including characteristics such as accuracy, detection level, multiplexing, quantification, portability, and designability. The effect of genetic diversity and evolution of plant viruses in the design and performance of some detection and disease control techniques are also discussed. High-throughput or next-generation sequencing provides broad-spectrum and accurate identification of viruses enabling multiplex detection, quantification, and the discovery of new viruses. Likely, this technique will be the future standard in diagnostics as its cost will be dropping and becoming more affordable.
Collapse
Affiliation(s)
- Luis Rubio
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- *Correspondence: Luis Rubio,
| | - Luis Galipienso
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Inmaculada Ferriol
- Plant Responses to Stress Programme, Centre for Research in Agricultural Genomics (CRAG-CSIC_UAB-UB) Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
26
|
Tiberini A, Tomlinson J, Micali G, Fontana A, Albanese G, Tomassoli L. Development of a reverse transcription-loop- mediated isothermal amplification (LAMP) assay for the rapid detection of onion yellow dwarf virus. J Virol Methods 2019; 271:113680. [PMID: 31202851 DOI: 10.1016/j.jviromet.2019.113680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/14/2019] [Accepted: 06/13/2019] [Indexed: 11/18/2022]
Abstract
Onion yellow dwarf virus (OYDV) is one of the most important viral pathogens of onion. In particular, on 'Rossa di Tropea' onion, granted with Protected Geographical Indication (PGI) trademarks, this pathogen represents the most limiting biotic stress in terms of spread, severity of symptoms and damage, and its detection is necessary to preserve high quality standards and avoid yield losses. A reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay was developed for detection of OYDV. The specificity, sensitivity, repeatability and reproducibility of the assay were validated according to EPPO standard PM7/98 (2). Diagnostic specificity, diagnostic sensitivity and diagnostic accuracy were determined in both leaf and bulb tissues. To enhance the feasibility of a LAMP-based method for field diagnosis, several nucleic acid extraction methods were compared to simplify sample preparation. The results showed the reliability of the method for OYDV detection, with a limit of detection (LOD) comparable to real time reverse transcription polymerase chain reaction (RT-qPCR). The ease of sample preparation, and the more than acceptable LOD, indicated that the RT-LAMP assay could be used in plant pathology laboratories with limited facilities and resources, as well as directly in the field. This work was carried out in the frame of "SI.ORTO" project.
Collapse
Affiliation(s)
- Antonio Tiberini
- Università degli Studi Mediterranea di Reggio Calabria, Dipartimento di AGRARIA, Località Feo di Vito, 89122 Reggio Calabria, Italy.
| | | | - Giuseppe Micali
- Università degli Studi Mediterranea di Reggio Calabria, Dipartimento di AGRARIA, Località Feo di Vito, 89122 Reggio Calabria, Italy
| | - Anna Fontana
- Università degli Studi Mediterranea di Reggio Calabria, Dipartimento di AGRARIA, Località Feo di Vito, 89122 Reggio Calabria, Italy
| | - Giuliana Albanese
- Università degli Studi Mediterranea di Reggio Calabria, Dipartimento di AGRARIA, Località Feo di Vito, 89122 Reggio Calabria, Italy
| | - Laura Tomassoli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca Difesa e Certificazione, Via C.G. Bertero 22, 00156 Roma, Italy
| |
Collapse
|
27
|
Field Evaluation of a Loop-Mediated Isothermal Amplification (LAMP) Platform for the Detection of Schistosoma japonicum Infection in Oncomelania hupensis Snails. Trop Med Infect Dis 2018; 3:tropicalmed3040124. [PMID: 30558259 PMCID: PMC6306868 DOI: 10.3390/tropicalmed3040124] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/20/2022] Open
Abstract
Schistosoma infection in snails can be monitored by microscopy or indirectly by sentinel mice. As both these approaches can miss infections, more sensitive tests are needed, particularly in low-level transmission settings. In this study, loop-mediated isothermal amplification (LAMP) technique, designed to detect a specific 28S ribosomal Schistosoma japonicum (Sj28S) gene with high sensitivity, was compared to microscopy using snail samples from 51 areas endemic for schistosomiasis in five Chinese provinces. In addition, the results were compared with those from polymerase chain reaction (PCR) by adding DNA sequencing as a reference. The testing of pooled snail samples with the LAMP assay showed that a dilution factor of 1/50, i.e., one infected snail plus 49 non-infected ones, would still result in a positive reaction after the recommended number of amplification cycles. Testing a total of 232 pooled samples, emanating from 4006 snail specimens, showed a rate of infection of 6.5%, while traditional microscopy found only 0.4% positive samples in the same materials. Parallel PCR analysis confirmed the diagnostic accuracy of the LAMP assay, with DNA sequencing even giving LAMP a slight lead. Microscopy and the LAMP test were carried out at local schistosomiasis-control stations, demonstrating that the potential of the latter assay to serve as a point-of-care (POC) test with results available within 60–90 min, while the more complicated PCR test had to be carried out at the National Institute of Parasitic Diseases (NIPD) in Shanghai, China. In conclusion, LAMP was found to be clearly superior to microscopy and as good as, or better than, PCR. As it can be used under field conditions and requires less time than other techniques, LAMP testing would improve and accelerate schistosomiasis control.
Collapse
|