1
|
Aglietti C, Benigno A, Cacciola SO, Moricca S. LAMP Reaction in Plant Disease Surveillance: Applications, Challenges, and Future Perspectives. Life (Basel) 2024; 14:1549. [PMID: 39768257 PMCID: PMC11678381 DOI: 10.3390/life14121549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Movements of plant pathogenic microorganisms in uncontaminated areas occur today at an alarming rate, driven mainly by global trade and climate change. These invaders can trigger new disease outbreaks able to impact the biodiversity and economies of vast territories and affect a variety of ecosystem services. National and supranational regulatory deficiencies, such as inadequate quarantine measures and ineffective early pathogen detection at ports of entry, exacerbate the issue. Thus, there is an urgent need for accurate and rapid diagnostic tools to intercept invasive and nonindigenous plant pathogens. The LAMP (Loop-mediated isothermal AMPlification) technique is a robust, flexible tool representing a significant advance in point-of-care (POC) diagnostics. Its user-friendliness and sensitivity offer a breakthrough in phytosanitary checks at points of entry (harbors and airports), for disease and pest surveillance at vulnerable sites (e.g., nurseries and wood-processing and storage facilities), and for territorial monitoring of new disease outbreaks. This review highlights the strengths and weaknesses of LAMP, emphasizing its potential to revolutionize modern plant disease diagnostics.
Collapse
Affiliation(s)
- Chiara Aglietti
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (A.B.); (S.M.)
| | - Alessandra Benigno
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (A.B.); (S.M.)
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy;
| | - Salvatore Moricca
- Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology Section, University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy; (A.B.); (S.M.)
| |
Collapse
|
2
|
Xue Q, Sheng L, Guo J, Zou M, Teng Q, Xu S, Li Y, Zhao J. Rapid visual detection of the allergen Dermatophagoides farinae in house dust by loop-mediated isothermal amplification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84674-84685. [PMID: 37368209 DOI: 10.1007/s11356-023-28398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023]
Abstract
Dermatophagoides farinae is considered to be an important factor causing some allergic diseases, such as urticaria, allergic rhinitis, asthma, and other interrelated diseases. Avoiding exposure to allergens is the most effective way to reduce allergic reactions. In this study, we successfully established a loop-mediated isothermal amplification (LAMP) method for the detection of D. farinae DNA target internal transcribed spacer (ITS) and D. farinae 1 allergen (Der f 1) genes. The turbidity-monitoring system and visual fluorescent reagents were used to verify the test results of LAMP assay. Following optimization of the primers and reaction temperatures, the amplification sensitivity, specificity, and efficiency of the method for detecting D. farinae were assessed. There was no cross-reaction with other arthropod species that are commonly found in indoor environmental dust, such as Dermatophagoides pteronyssinus, Alophagoides ovatus, Periplaneta americana, Anopheles sinensis, and Musca domestica. Furthermore, the sensitivity of LAMP assay for detecting D. farinae DNA was 10 times greater than that of conventional PCR. The positive detection rate by the LAMP method was greater than the conventional PCR for both single D. farinae mites and D. farinae mites in indoor dust. A new type of LAMP method for D. farinae based on the Der f 1 and ITS genes was, therefore, successfully established. This study is the first time to detect the D. farinae allergen using LAMP assay. This assay could be useful as a model for the rapid detection of allergens produced by other house dust mites in the future.
Collapse
Affiliation(s)
- Qiqi Xue
- Department of Medical Parasitology, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Lingwei Sheng
- Medical Laboratory Science, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Junjie Guo
- Department of Medical Parasitology, Qiqihaer Medical College, Qiqihaer, 161000, Heilongjiang, China
| | - Minghui Zou
- Department of Medical Parasitology, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Qiao Teng
- Department of Medical Parasitology, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Sijia Xu
- Medical Laboratory Science, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Yuanyuan Li
- Department of Medical Parasitology, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Jinhong Zhao
- Department of Medical Parasitology, Wannan Medical College, Wuhu, 241002, Anhui, China.
- Anhui Province Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, 241002, Anhui, China.
| |
Collapse
|