1
|
Blume C, Kraus X, Heene S, Loewner S, Stanislawski N, Cholewa F, Blume H. Vascular implants - new aspects for in situ tissue engineering. Eng Life Sci 2022; 22:344-360. [PMID: 35382534 PMCID: PMC8961049 DOI: 10.1002/elsc.202100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/10/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Conventional synthetic vascular grafts require ongoing anticoagulation, and autologous venous grafts are often not available in elderly patients. This review highlights the development of bioartificial vessels replacing brain-dead donor- or animal-deriving vessels with ongoing immune reactivity. The vision for such bio-hybrids exists in a combination of biodegradable scaffolds and seeding with immune-neutral cells, and here different cells sources such as autologous progenitor cells or stem cells are relevant. This kind of in situ tissue engineering depends on a suitable bioreactor system with elaborate monitoring systems, three-dimensional (3D) visualization and a potential of cell conditioning into the direction of the targeted vascular cell phenotype. Necessary bioreactor tools for dynamic and pulsatile cultivation are described. In addition, a concept for design of vasa vasorum is outlined, that is needed for sustainable nutrition of the wall structure in large caliber vessels. For scaffold design and cell adhesion additives, different materials and technologies are discussed. 3D printing is introduced as a relatively new field with promising prospects, for example, to create complex geometries or micro-structured surfaces for optimal cell adhesion and ingrowth in a standardized and custom designed procedure. Summarizing, a bio-hybrid vascular prosthesis from a controlled biotechnological process is thus coming more and more into view. It has the potential to withstand strict approval requirements applied for advanced therapy medicinal products.
Collapse
Affiliation(s)
- Cornelia Blume
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Xenia Kraus
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Sebastian Heene
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Sebastian Loewner
- Institute for Technical ChemistryLeibniz University HannoverHannoverGermany
| | - Nils Stanislawski
- Institute for Microelectronic SystemsLeibniz University HannoverHannoverGermany
| | - Fabian Cholewa
- Institute for Microelectronic SystemsLeibniz University HannoverHannoverGermany
| | - Holger Blume
- Institute for Microelectronic SystemsLeibniz University HannoverHannoverGermany
| |
Collapse
|
2
|
Ahmetaj-Shala B, Kawai R, Marei I, Nikolakopoulou Z, Shih CC, Konain B, Reed DM, Mongey R, Kirkby NS, Mitchell JA. A bioassay system of autologous human endothelial, smooth muscle cells, and leukocytes for use in drug discovery, phenotyping, and tissue engineering. FASEB J 2019; 34:1745-1754. [PMID: 31914612 PMCID: PMC6972557 DOI: 10.1096/fj.201901379rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 01/02/2023]
Abstract
Blood vessels are comprised of endothelial and smooth muscle cells. Obtaining both types of cells from vessels of living donors is not possible without invasive surgery. To address this, we have devised a strategy whereby human endothelial and smooth muscle cells derived from blood progenitors from the same donor could be cultured with autologous leukocytes to generate a same donor “vessel in a dish” bioassay. Autologous sets of blood outgrowth endothelial cells (BOECs), smooth muscle cells (BO‐SMCs), and leukocytes were obtained from four donors. Cells were treated in monoculture and cumulative coculture conditions. The endothelial specific mediator endothelin‐1 along with interleukin (IL)‐6, IL‐8, tumor necrosis factor α, and interferon gamma‐induced protein 10 were measured under control culture conditions and after stimulation with cytokines. Cocultures remained viable throughout. The profile of individual mediators released from cells was consistent with what we know of endothelial and smooth muscle cells cultured from blood vessels. For the first time, we report a proof of concept study where autologous blood outgrowth “vascular” cells and leukocytes were studied alone and in coculture. This novel bioassay has usefulness in vascular biology research, patient phenotyping, drug testing, and tissue engineering.
Collapse
Affiliation(s)
- Blerina Ahmetaj-Shala
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Ryota Kawai
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Medicinal Safety Research Laboratories, Daiichi-Sankyo Co. Ltd., Tokyo, Japan
| | - Isra Marei
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Qatar Foundation Research and Development Division, Doha, Qatar
| | - Zacharoula Nikolakopoulou
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK.,Centre for Haematology, Faculty of Medicine, Imperial College London, London, UK
| | - Chih-Chin Shih
- Department of Pharmacology, National Defense Medical Center, Taipei, R.O.C., Taiwan
| | - Bhatti Konain
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel M Reed
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Róisín Mongey
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Nicholas S Kirkby
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jane A Mitchell
- Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
3
|
Brezinski ME. Comparing the Risk Factors of Plaque Rupture and Failed Plaque Healing in Acute Coronary Syndrome. JAMA Cardiol 2019; 4:329-331. [DOI: 10.1001/jamacardio.2019.0312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mark E. Brezinski
- Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- College of Osteopathic Medicine, University of New England, Biddeford, Maine
- Massachusetts Institute of Technology, Cambridge
| |
Collapse
|
4
|
Yang Z, Huang CYC, Candiotti KA, Zeng X, Yuan T, Li J, Yu H, Abdi S. Sox-9 facilitates differentiation of adipose tissue-derived stem cells into a chondrocyte-like phenotype in vitro. J Orthop Res 2011; 29:1291-7. [PMID: 21400575 DOI: 10.1002/jor.21336] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 11/19/2010] [Indexed: 02/04/2023]
Abstract
The purpose of this study is to test whether ectopic expression of Sox-9 can induce adipose tissue-derived stem cells (ASCs) to function as real nucleus pulposus (NP) cells in vitro. Adenoviral vectors expressing Sox-9 were reported to infect the chondroblastic and human disc cells, which resulted in increased Sox-9 and type II collagen production. ASCs were isolated from rat inguinal adipose pad, characterized, and transduced in vitro with a retroviral vector encoding the Sox-9 gene. Sox-9-engineered ASCs (ASCs/Sox-9) were induced for the chondrocyte-like cell differentiation by 3D cultured in alginate beads and TGF-β3 for 2 weeks. Expression of exogenous Sox-9 protein was detected. Type II collagen and Aggrecan gene expressions of induced ASCs/Sox-9 were measured using real-time PCR; proteoglycans expressions were measured by checking the glycosaminoglycan content and type II collagen production by enzyme-linked immunosorbent assay. Isolated ASCs were CD 29(+) /CD44(+) /C-Kit(-) /Lin(-) /CD34(-) /CD45(-) . ASCs/Sox-9 expressed marked increase in exogenous Sox-9 protein. After induction, type II collagen gene expression was sevenfold higher in mRNA levels, with an approximately twofold increase in protein levels of ASCs/Sox-9 compared to ASCs. Type II collagen and proteoglycan productions were significantly increased in the ASCs/Sox-9 compared to the ASCs. In addition, co-culture of induced ASCs/Sox-9 with matured NP cells resulted in enhanced increase in proteoglycan and type II collagen production. Constitutive retroviral expression of Sox-9 could efficiently induce ASCs differentiation into chondrocyte-like cells. This novel approach may provide a practicable system for a simple and rapid differentiation of ASCs into chondrocyte-like cells which may be potentially used as a stem cell-based therapeutic tool for the treatment of degenerative disc diseases.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|