1
|
Chen J, Luo M, Xing Z, Chen Y, Peng C, Li D. Start small, think big: MicroRNAs in diabetes mellitus and relevant cardiorenal-liver metabolic health spectrum. Metabolism 2025; 165:156153. [PMID: 39914482 DOI: 10.1016/j.metabol.2025.156153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Diabetes mellitus (DM), co-existing with metabolic disorder of cardio-renal-liver, is one of the most difficult problems in medicine that attracts global concern with high mortality. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that negatively regulates gene expression and exerts active against a large proportion of the transcriptome, due to their high evolutionary conservation. Emerging evidence prove that miRNAs are involved in the pathogenesis of DM and associated metabolic disorders, manifested by their variable alteration in the blood, urine, tissues, or organs, principally contributing to modulate the interconnections between DM and cardio-renal-liver metabolism. Mechanistically, miRNAs regulate various biological processes, such as metabolism of insulin, lipid, glucose, inflammatory response, fibrosis, oxidative stress, apoptosis, and angiogenesis, etc. This review emphasizes the function of miRNAs and highlights the physiopathological regulation of miRNA in DM and related complications, especially the dysfunction of cardiovascular system, kidneys, and liver, with the aim of providing promising biomarkers for assisting early diagnosis of DM with cardio-renal-liver- specific metabolic disorders, as well as for the development of miRNA-targeting agents.
Collapse
Affiliation(s)
- Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maozhu Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ziwei Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Geis L, Kurtz A. Oxygen sensing in the kidney. Nephrol Dial Transplant 2025; 40:446-454. [PMID: 39496526 DOI: 10.1093/ndt/gfae225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 11/06/2024] Open
Abstract
The kidneys fulfil several essential homeostatic functions for the body. One of them is the maintenance of sufficient oxygen supply to the organs. For this purpose, the kidneys control the formation of red blood cells by the production of the hormone erythropoietin. This control of red cell formation is not only relevant to prevent states of oxygen deficiency but also to prevent an unwanted increase of red cell numbers causing thromboembolic risks. The adequate production of erythropoietin requires a sensing of the arterial oxygen content and transduction to hormone production. This oxygen sensing is a two-step process which includes a translation of the arterial oxygen content to respective oxygen tension in the tubulointerstitium and a perception of the resulting local interstitial oxygen tension to translate them into specific cellular responses such as the production of erythropoietin. This contribution will describe these steps of oxygen sensing for the healthy kidney and for the changes occurring during states of chronic renal disease, which are commonly associated with anemia. In this context a special focus will also be set on intrarenal hypoxia and oxygen sensing in the diabetic kidney including the treatment with tubular glucose transport (sodium-glucose cotransporter 2) inhibitors which might influence the oxygen sensing in the kidney. Finally, we will consider the effects of prolyl-hydroxylase inhibitors (HIF-PHIs), which fundamentally interfere with the cellular oxygen sensing and which are meanwhile treatment options in renal anemia.
Collapse
Affiliation(s)
- Lisa Geis
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Luo M, Hu Z, Yang J, Yang J, Sheng W, Lin C, Li D, He Q. Diosgenin Improves Lipid Metabolism in Diabetic Nephropathy via Regulation of miR-148b-3p/DNMT1/FOXO1 Axis. Nephron Clin Pract 2024; 149:226-239. [PMID: 39602888 DOI: 10.1159/000541690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/24/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND The progression of diabetic nephropathy (DN) is closely associated with lipid accumulation. Diosgenin (Dio) plays a beneficial role in the lipid metabolism associated with multiple diseases. Thus, the mechanism underlying Dio's function in DN associated with aberrant lipid accumulation warrants further investigation. METHODS To model DN in vitro, HK-2 cells were treated with high glucose (HG) and palmitic acid. Cell viability was evaluated using MTT assay. The triglyceride (TG) content in HK-2 cells was measured using a commercial assay kit. The formation of lipid droplets in HK-2 cells was observed using Oil Red O staining. The expression levels of mRNA and protein were detected using RT-qPCR and Western blot, respectively. The DNA methylation of FOXO1 was assessed using MSP. The interaction between DNMT1 and the FOXO1 promoter was confirmed by ChIP assay. RESULTS Dio treatment reduced TG levels and lipid droplet formation in HK-2 cells co-treated with HG and palmitic acid. Simultaneously, the levels of miR-148b-3p and FOXO1 were increased by Dio, while Dio decreased the expression levels of DNMT1 and SREBP-2. Meanwhile, miR-148b-3p can bind to DNMT1, which in turn inhibits the expression of FOXO1 by mediating the DNA methylation of FOXO1. In addition, FOXO1 negatively regulates the expression of SREBP-2 by interacting with the SREBP-2 promoter. MiR-148b-3p inhibition or silencing of FOXO1 abolished the inhibitory effect of Dio on TG production and lipid droplet formation. This effect was further exacerbated by the downregulation of DNMT1. FOXO1 overexpression may counteract the promotive effects of miR-148b-3p inhibitor on lipid accumulation. CONCLUSIONS Dio treatment reduced TG production and lipid droplet formation in HK-2 cells during the progression of DN by modulating the miR-148b-3p/DNMT1/FOXO1/SREBP-2 axis. This finding provides new evidence supporting the therapeutic potential of Dio for DN.
Collapse
Affiliation(s)
- Min Luo
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zongren Hu
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Jichang Yang
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Gooeto Internet-Based Hospital, Changsha, China
| | - Jinhan Yang
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- Gooeto Internet-Based Hospital, Changsha, China
| | - Wen Sheng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Chengxiong Lin
- Huairen Hospital of Traditional Chinese Medicine, Huaihua, China
| | - Dian Li
- Department of Ophthalmology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Qinghu He
- Hunan Engineering Research Center of Internet-Chinese and Western Medicine Collaboration-Health Service, Hunan University of Medicine, Huaihua, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
4
|
Tang L, Zhang J, Han J, Zhang D, Zhang H, Liu J, Li X. Molecular mechanism of circHIPK3 in mitochondrial function in septic acute kidney injury. ENVIRONMENTAL TOXICOLOGY 2024; 39:2596-2609. [PMID: 38205898 DOI: 10.1002/tox.24127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 11/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Cell senescence, glycolysis, and mitochondrial deficit jointly regulate the development of septic acute kidney injury (SAKI). This study aimed to explore the role of circular RNA HIPK3 (circHIPK3) in mitochondrial function in SAKI. The SAKI mouse model was established by Candida albicans infection, followed by Western blot assay, measurements of serum lactate, and adenosine triphosphate (ATP), 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1) staining and flow cytometry. Human renal tubular epithelial cells were treated with lipopolysaccharide to establish the SAKI cell model, followed by cell counting kit-8 assay, tests of hexokinase activity, lactate production, oxygen consumption rate, extracellular acidification rate, ATP, and JC-1 staining, and Western blot assay. The roles of mitochondrial pyruvate carrier 1 (MPC1) were validated by kidney function tests, hematoxylin and eosin staining, periodic acid-Schiff staining, and SA-β-gal staining. circHIPK3 downregulation reduced glycolysis and mitochondrial dysfunction both in vivo and in vitro through the microRNA (miR)-148b-3p/DNMT1/3a/Klotho axis. Inhibition of miR-148b-3p or Klotho increased glycolysis and mitochondrial dysfunction. Knockdown of MPC1 increased lactate content and decreased ATP levels and MMP both in vivo and in vitro. Collectively, circHIPK3, in concert with the miR-148b-3p/DNMT1/3a/Klotho axis, increased glycolysis, and inhibited the negative regulation of lactate production by MPC1, and aggravated mitochondrial dysfunction and cell senescence in SAKI.
Collapse
Affiliation(s)
- Lili Tang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Jie Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Jing Han
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Danhong Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Hongtao Zhang
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Jun Liu
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| | - Xiaoyue Li
- Department of Critical Care Medicine, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
- Department of Emergency, The Fifth Affiliated Hospital (Zhuhai) of Zunyi Medical University, Zhuhai, People's Republic of China
| |
Collapse
|
5
|
Yamahara K, Yasuda-Yamahara M, Kume S. A novel therapeutic target for kidney diseases: Lessons learned from starvation response. Pharmacol Ther 2024; 254:108590. [PMID: 38286162 DOI: 10.1016/j.pharmthera.2024.108590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
The prevalence of chronic kidney disease (CKD) is increasing worldwide, making the disease an urgent clinical challenge. Caloric restriction has various anti-aging and organ-protective effects, and unraveling its molecular mechanisms may provide insight into the pathophysiology of CKD. In response to changes in nutritional status, intracellular nutrient signaling pathways show adaptive changes. When nutrients are abundant, signals such as mechanistic target of rapamycin complex 1 (mTORC1) are activated, driving cell proliferation and other processes. Conversely, others, such as sirtuins and AMP-activated protein kinase, are activated during energy scarcity, in an attempt to compensate. Autophagy, a cellular self-maintenance mechanism that is regulated by such signals, has also been reported to contribute to the progression of various kidney diseases. Furthermore, in recent years, ketone bodies, which have long been considered to be detrimental, have been reported to play a role as starvation signals, and thereby to have renoprotective effects, via the inhibition of mTORC1. Therefore, in this review, we discuss the role of mTORC1, which is one of the most extensively studied nutrient-related signals associated with kidney diseases, autophagy, and ketone body metabolism; and kidney energy metabolism as a novel therapeutic target for CKD.
Collapse
Affiliation(s)
- Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Shiga, Japan.
| |
Collapse
|
6
|
Yamahara K, Yasuda-Yamahara M, Kuwagata S, Chin-Kanasaki M, Kume S. Ketone Body Metabolism in Diabetic Kidney Disease. KIDNEY360 2024; 5:320-326. [PMID: 38227425 PMCID: PMC10914200 DOI: 10.34067/kid.0000000000000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
Ketone bodies have a negative image because of ketoacidosis, one of the acute and serious complications in diabetes. The negative image persists despite the fact that ketone bodies are physiologically produced in the liver and serve as an indispensable energy source in extrahepatic organs, particularly during long-term fasting. However, accumulating experimental evidence suggests that ketone bodies exert various health benefits. Particularly in the field of aging research, there is growing interest in the potential organoprotective effects of ketone bodies. In addition, ketone bodies have a potential role in preventing kidney diseases, including diabetic kidney disease (DKD), a diabetic complication caused by prolonged hyperglycemia that leads to a decline in kidney function. Ketone bodies may help alleviate the renal burden from hyperglycemia by being used as an alternative energy source in patients with diabetes. Furthermore, ketone body production may reduce inflammation and delay the progression of several kidney diseases in addition to DKD. Although there is still insufficient research on the use of ketone bodies as a treatment and their effects, their renoprotective effects are being gradually proven. This review outlines the ketone body-mediated renoprotective effects in DKD and other kidney diseases.
Collapse
Affiliation(s)
- Kosuke Yamahara
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | |
Collapse
|
7
|
Urinary microRNA in Diabetic Kidney Disease: A Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020354. [PMID: 36837555 PMCID: PMC9962090 DOI: 10.3390/medicina59020354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023]
Abstract
Diabetic kidney disease is the most common primary disease of end-stage kidney disease globally; however, a sensitive and accurate biomarker to predict this disease remains awaited. microRNAs are endogenous single-stranded noncoding RNAs that have intervened in different post-transcriptional regulations of various cellular biological functions. Previous literatures have reported its potential role in the pathophysiology of diabetic kidney disease, including regulation of Transforming Growth Factor-β1-mediated fibrosis, extracellular matrix and cell adhesion proteins, cellular hypertrophy, growth factor, cytokine production, and redox system activation. Urinary microRNAs have emerged as a novel, non-invasive liquid biopsy for disease diagnosis. In this review, we describe the available experimental and clinical evidence of urinary microRNA in the context of diabetic kidney disease and discuss the future application of microRNA in routine practice.
Collapse
|
8
|
Zhou X, Xu C, Dong J, Liao L. Role of renal tubular programed cell death in diabetic kidney disease. Diabetes Metab Res Rev 2023; 39:e3596. [PMID: 36401596 PMCID: PMC10078574 DOI: 10.1002/dmrr.3596] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/22/2022] [Accepted: 10/10/2022] [Indexed: 11/21/2022]
Abstract
The pathogenic mechanism of diabetic kidney disease (DKD) is involved in various functions; however, its inadequate characterisation limits the availability of effective treatments. Tubular damage is closely correlated with renal function and is thought to be the main contributor to the injury observed in early DKD. Programed cell death (PCD) occurs during the biological development of the living body. Accumulating evidence has clarified the fundamental role of abnormalities in tubular PCD during DKD pathogenesis. Among PCD types, classical apoptosis, autophagic cell death, and pyroptosis are the most studied and will be the focus of this review. Our review aims to elucidate the current knowledge of the mechanism of DKD and the potential therapeutic potential of drugs targeting tubular PCD pathways in DKD.
Collapse
Affiliation(s)
- Xiaojun Zhou
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Chunmei Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Shandong Provincial Hospital, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China
- Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| |
Collapse
|
9
|
Li J, Quan C, He YL, Cao Y, Chen Y, Wang YF, Wu LY. Autophagy regulated by the HIF/REDD1/mTORC1 signaling is progressively increased during erythroid differentiation under hypoxia. Front Cell Dev Biol 2022; 10:896893. [PMID: 36092719 PMCID: PMC9448881 DOI: 10.3389/fcell.2022.896893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
For hematopoietic stem and progenitor cells (HSPCs), hypoxia is a specific microenvironment known as the hypoxic niche. How hypoxia regulates erythroid differentiation of HSPCs remains unclear. In this study, we show that hypoxia evidently accelerates erythroid differentiation, and autophagy plays a pivotal role in this process. We further determine that mTORC1 signaling is suppressed by hypoxia to relieve its inhibition of autophagy, and with the process of erythroid differentiation, mTORC1 activity gradually decreases and autophagy activity increases accordingly. Moreover, we provide evidence that the HIF-1 target gene REDD1 is upregulated to suppress mTORC1 signaling and enhance autophagy, thereby promoting erythroid differentiation under hypoxia. Together, our study identifies that the enhanced autophagy by hypoxia favors erythroid maturation and elucidates a new regulatory pattern whereby autophagy is progressively increased during erythroid differentiation, which is driven by the HIF-1/REDD1/mTORC1 signaling in a hypoxic niche.
Collapse
|
10
|
Pan-Src kinase inhibitor treatment attenuates diabetic kidney injury via inhibition of Fyn kinase-mediated endoplasmic reticulum stress. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1086-1097. [PMID: 35918533 PMCID: PMC9440146 DOI: 10.1038/s12276-022-00810-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/13/2022] [Accepted: 04/28/2022] [Indexed: 11/08/2022]
Abstract
Src family kinases (SFKs) have been implicated in the pathogenesis of kidney fibrosis. However, the specific mechanism by which SFKs contribute to the progression of diabetic kidney disease (DKD) remains unclear. Our preliminary transcriptome analysis suggested that SFK expression was increased in diabetic kidneys and that the expression of Fyn (a member of the SFKs), along with genes related to unfolded protein responses from the endoplasmic reticulum (ER) stress signaling pathway, was upregulated in the tubules of human diabetic kidneys. Thus, we examined whether SFK-induced ER stress is associated with DKD progression. Mouse proximal tubular (mProx24) cells were transfected with Fyn or Lyn siRNA and exposed to high glucose and palmitate (HG-Pal). Streptozotocin-induced diabetic rats were treated with KF-1607, a novel pan-Src kinase inhibitor (SKI) with low toxicity. The effect of KF-1607 was compared to that of losartan, a standard treatment for patients with DKD. Among the SFK family members, the Fyn and Lyn kinases were upregulated under diabetic stress. HG-Pal induced p70S6 kinase and JNK/CHOP signaling and promoted tubular injury. Fyn knockdown but not Lyn knockdown inhibited this detrimental signaling pathway. In addition, diabetic rats treated with KF-1607 showed improved kidney function and decreased ER stress, inflammation, and fibrosis compared with those treated with losartan. Collectively, these findings indicate that Fyn kinase is a specific member of the SFKs implicated in ER stress activation leading to proximal tubular injury in the diabetic milieu and that pan-SKI treatment attenuates kidney injury in diabetic rats. These data highlight Fyn kinase as a viable target for the development of therapeutic agents for DKD. Insights into a signaling pathway that promotes diabetic kidney disease could lead to new therapies that protect against this major cause of kidney failure. Past studies have suggested that the various Src family kinase (SFK) signaling proteins play a part in the cell death and scar tissue formation associated with diabetic kidney disease. Hunjoo Ha of Ewha Womans University, Seoul, South Korea, and colleagues have now focused on one particular SFK, Fyn, as a direct driver of the kidney damage seen in mouse models of diabetes. Genetic interventions that selectively inhibit Fyn suppressed this damage, as did treatment with an oral drug that broadly inactivates SFKs. This experimental drug proved as effective as controlling inflammation and oxidative damage in the kidney as an already clinically approved treatment, confirming the significance of SFK signaling in this condition.
Collapse
|
11
|
Oe Y, Vallon V. The Pathophysiological Basis of Diabetic Kidney Protection by Inhibition of SGLT2 and SGLT1. KIDNEY AND DIALYSIS 2022; 2:349-368. [PMID: 36380914 PMCID: PMC9648862 DOI: 10.3390/kidneydial2020032] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
SGLT2 inhibitors can protect the kidneys of patients with and without type 2 diabetes mellitus and slow the progression towards end-stage kidney disease. Blocking tubular SGLT2 and spilling glucose into the urine, which triggers a metabolic counter-regulation similar to fasting, provides unique benefits, not only as an anti-hyperglycemic strategy. These include a low hypoglycemia risk and a shift from carbohydrate to lipid utilization and mild ketogenesis, thereby reducing body weight and providing an additional energy source. SGLT2 inhibitors counteract hyperreabsorption in the early proximal tubule, which acutely lowers glomerular pressure and filtration and thereby reduces the physical stress on the filtration barrier, the filtration of tubule-toxic compounds, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity and improved mitochondrial function and autophagy, can reduce pro-inflammatory, pro-senescence, and pro-fibrotic signaling and preserve tubular function and GFR in the long-term. By shifting transport downstream, SGLT2 inhibitors more equally distribute the transport burden along the nephron and may mimic systemic hypoxia to stimulate erythropoiesis, which improves oxygen delivery to the kidney and other organs. SGLT1 inhibition improves glucose homeostasis by delaying intestinal glucose absorption and by increasing the release of gastrointestinal incretins. Combined SGLT1 and SGLT2 inhibition has additive effects on renal glucose excretion and blood glucose control. SGLT1 in the macula densa senses luminal glucose, which affects glomerular hemodynamics and has implications for blood pressure control. More studies are needed to better define the therapeutic potential of SGLT1 inhibition to protect the kidney, alone or in combination with SGLT2 inhibition.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92161, USA
| |
Collapse
|
12
|
Hinden L, Ahmad M, Hamad S, Nemirovski A, Szanda G, Glasmacher S, Kogot-Levin A, Abramovitch R, Thorens B, Gertsch J, Leibowitz G, Tam J. Opposite physiological and pathological mTORC1-mediated roles of the CB1 receptor in regulating renal tubular function. Nat Commun 2022; 13:1783. [PMID: 35379807 PMCID: PMC8980033 DOI: 10.1038/s41467-022-29124-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Activation of the cannabinoid-1 receptor (CB1R) and the mammalian target of rapamycin complex 1 (mTORC1) in the renal proximal tubular cells (RPTCs) contributes to the development of diabetic kidney disease (DKD). However, the CB1R/mTORC1 signaling axis in the kidney has not been described yet. We show here that hyperglycemia-induced endocannabinoid/CB1R stimulation increased mTORC1 activity, enhancing the transcription of the facilitative glucose transporter 2 (GLUT2) and leading to the development of DKD in mice; this effect was ameliorated by specific RPTCs ablation of GLUT2. Conversely, CB1R maintained the normal activity of mTORC1 by preventing the cellular excess of amino acids during normoglycemia. Our findings highlight a novel molecular mechanism by which the activation of mTORC1 in RPTCs is tightly controlled by CB1R, either by enhancing the reabsorption of glucose and inducing kidney dysfunction in diabetes or by preventing amino acid uptake and maintaining normal kidney function in healthy conditions. Renal proximal tubules modulate whole-body homeostasis by sensing various nutrients. Here the authors describe the existence and importance of a unique CB1/mTORC1/GLUT2 signaling axis in regulating nutrient homeostasis in healthy and diseased kidney.
Collapse
|
13
|
Miura T, Kuno A, Tanaka M. Diabetes modulation of the myocardial infarction- acute kidney injury axis. Am J Physiol Heart Circ Physiol 2022; 322:H394-H405. [PMID: 35089809 DOI: 10.1152/ajpheart.00639.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since there is crosstalk in functions of the heart and kidney, acute or chronic injury in one of the two organs provokes adaptive and/or maladaptive responses in both organs, leading to cardiorenal syndrome (CRS). Acute kidney injury (AKI) induced by acute heart failure is referred to as type 1 CRS, and a frequent cause of this type of CRS is acute myocardial infarction (AMI). Diabetes mellitus increases the risk of AMI and also the risk of AKI of various causes. However, there have been only a few studies in which animal models of diabetes were used to examine how diabetes modulates AMI-induced AKI. In this review, we summarize findings regarding the mechanisms of type 1 CRS and the impact of diabetes on both AMI and renal susceptibility to AKI and we discuss mechanisms by which diabetes modulates AMI-induced AKI. Hemodynamic alterations induced by AMI could be augmented by diabetes via its detrimental effect on infarct size and contractile function of the non-infarcted region in the heart. Diabetes increases susceptibility of renal cells to hypoxia and oxidative stress by modulation of signaling pathways that regulate cell survival and autophagy. Recent studies have shown that diabetes mellitus even at early stage of cardiomyopathy/nephropathy predisposes the kidney to AMI-induced AKI, in which activation of toll-like receptors and reactive oxygen species derived from NADPH oxidases are involved. Further analysis of crosstalk between diabetic cardiomyopathy and diabetic kidney disease is necessary for obtaining a more comprehensive understanding of modulation of the AMI-AKI axis by diabetes.
Collapse
Affiliation(s)
- Tetsuji Miura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan.,Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Atsushi Kuno
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Pharmacology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
14
|
Nakano T, Watanabe H, Imafuku T, Tokumaru K, Fujita I, Arimura N, Maeda H, Tanaka M, Matsushita K, Fukagawa M, Maruyama T. Indoxyl Sulfate Contributes to mTORC1-Induced Renal Fibrosis via The OAT/NADPH Oxidase/ROS Pathway. Toxins (Basel) 2021; 13:toxins13120909. [PMID: 34941746 PMCID: PMC8706756 DOI: 10.3390/toxins13120909] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/26/2022] Open
Abstract
Activation of mTORC1 (mechanistic target of rapamycin complex 1) in renal tissue has been reported in chronic kidney disease (CKD)-induced renal fibrosis. However, the molecular mechanisms responsible for activating mTORC1 in CKD pathology are not well understood. The purpose of this study was to identify the uremic toxin involved in mTORC1-induced renal fibrosis. Among the seven protein-bound uremic toxins, only indoxyl sulfate (IS) caused significant activation of mTORC1 in human kidney 2 cells (HK-2 cells). This IS-induced mTORC1 activation was inhibited in the presence of an organic anion transporter inhibitor, a NADPH oxidase inhibitor, and an antioxidant. IS also induced epithelial–mesenchymal transition of tubular epithelial cells (HK-2 cells), differentiation of fibroblasts into myofibroblasts (NRK-49F cells), and inflammatory response of macrophages (THP-1 cells), which are associated with renal fibrosis, and these effects were inhibited in the presence of rapamycin (mTORC1 inhibitor). In in vivo experiments, IS overload was found to activate mTORC1 in the mouse kidney. The administration of AST-120 or rapamycin targeted to IS or mTORC1 ameliorated renal fibrosis in Adenine-induced CKD mice. The findings reported herein indicate that IS activates mTORC1, which then contributes to renal fibrosis. Therapeutic interventions targeting IS and mTORC1 could be effective against renal fibrosis in CKD.
Collapse
Affiliation(s)
- Takehiro Nakano
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
- Correspondence: ; Tel.: +81-96-371-4855
| | - Tadashi Imafuku
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Kai Tokumaru
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Issei Fujita
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Nanaka Arimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| | - Motoko Tanaka
- Department of Nephrology, Akebono Clinic, Kumamoto 8614112, Japan; (M.T.); (K.M.)
| | - Kazutaka Matsushita
- Department of Nephrology, Akebono Clinic, Kumamoto 8614112, Japan; (M.T.); (K.M.)
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine, Kanagawa 2591193, Japan;
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 8620973, Japan; (T.N.); (T.I.); (K.T.); (I.F.); (N.A.); (H.M.); (T.M.)
| |
Collapse
|
15
|
Roles of mTOR in Diabetic Kidney Disease. Antioxidants (Basel) 2021; 10:antiox10020321. [PMID: 33671526 PMCID: PMC7926630 DOI: 10.3390/antiox10020321] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and the number of patients affected is increasing worldwide. Thus, there is a need to establish a new treatment for DKD to improve the renal prognosis of diabetic patients. Recently, it has shown that intracellular metabolic abnormalities are involved in the pathogenesis of DKD. In particular, the activity of mechanistic target of rapamycin complex 1 (mTORC1), a nutrient-sensing signaling molecule, is hyperactivated in various organs of diabetic patients, which suggests the involvement of excessive mTORC1 activation in the pathogenesis of diabetes. In DKD, hyperactivated mTORC1 may be involved in the pathogenesis of podocyte damage, which causes proteinuria, and tubular cell injury that decreases renal function. Therefore, elucidating the role of mTORC1 in DKD and developing new therapeutic agents that suppress mTORC1 hyperactivity may shed new light on DKD treatments in the future.
Collapse
|
16
|
Differential organ-specific inflammatory response to progranulin in high-fat diet-fed mice. Sci Rep 2021; 11:1194. [PMID: 33441916 PMCID: PMC7806827 DOI: 10.1038/s41598-020-80940-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023] Open
Abstract
Progranulin (PGRN) has been reported to bind tumor necrosis factor (TNF) receptor and to inhibit TNFα signaling. We evaluated the effect of augmentation of TNFα signaling by PGRN deficiency on the progression of kidney injury. Eight-week-old PGRN knockout (KO) and wild-type (WT) mice were fed a standard diet or high-fat diet (HFD) for 12 weeks. Albuminuria, markers of tubular damage, and renal mRNA levels of inflammatory cytokines were higher in HFD-fed KO (KO-HFD) mice than in HFD-fed WT (WT-HFD) mice. Body weight, vacuolization in proximal tubules, and systemic and adipose tissue inflammatory markers were lower in the KO-HFD mice than in the WT-HFD mice. The renal megalin expression was lower in the KO mice than in the WT mice regardless of the diet type. The megalin expression was also reduced in mouse proximal tubule epithelial cells stimulated with TNFα and in those with PGRN knockdown by small interfering RNA in vitro. PGRN deficiency was associated with both exacerbated renal inflammation and decreased systemic inflammation, including that in the adipose tissue of mice with HFD-induced obesity. Improved tubular vacuolization in the KO-HFD mice might partially be explained by the decreased expression of megalin in proximal tubules.
Collapse
|
17
|
Oshima M, Hara A, Toyama T, Jun M, Pollock C, Jardine M, Harrap S, Poulter N, Cooper ME, Woodward M, Chalmers J, Perkovic V, Wong MG, Wada T. Comparison of Circulating Biomarkers in Predicting Diabetic Kidney Disease Progression With Autoantibodies to Erythropoietin Receptor. Kidney Int Rep 2020; 6:284-295. [PMID: 33615053 PMCID: PMC7879109 DOI: 10.1016/j.ekir.2020.10.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/03/2020] [Accepted: 10/27/2020] [Indexed: 01/21/2023] Open
Abstract
Introduction Several circulating markers, including autoantibodies to erythropoietin receptor (anti-EPOR antibodies), have been identified as useful biomarkers in predicting diabetic kidney disease progression. However, a direct comparison of their utility is lacking. We aimed to validate and to compare the prognostic value of anti-EPOR antibodies with that of other known biomarkers, using the ADVANCE trial and its long-term follow-up, ADVANCE-ON, cohorts. Methods In this nested case-control study from the ADVANCE trial cohort, we included 165 case participants who had the composite kidney outcome (renal replacement therapy, renal death, or doubling of serum creatinine to ≥200 μmol/l) and 330 matched controls. We compared the associations of baseline plasma levels of anti-EPOR antibodies, tumor necrosis factor receptor (TNFR)-1 and -2, and bone morphogenetic protein (BMP)-7 with kidney outcomes. Results Cases had higher baseline plasma levels of anti-EPOR antibodies than controls (median 1.7 vs. 0.6 enzyme-linked immunosorbent assay unit, P < 0.001). Higher levels of anti-EPOR antibodies were associated with an increased risk of kidney outcome (odds ratio 2.16 [95% confidence interval 1.51, 3.08], per 1 SD of log-transformed levels) after adjusting for conventional markers. Elevated circulating TNFR1 and TNFR2 levels, and lower BMP-7 levels at baseline, were associated with poor kidney outcome (odds ratios 2.06 [1.29, 3.30], 1.66 [1.13, 2.43], and 0.45 [0.32, 0.65], respectively). The addition of anti-EPOR antibodies into the model improved the prediction of kidney outcome, regardless of other biomarkers. Conclusion Anti-EPOR antibodies provide a promising biomarker, as with TNFR1, TNFR2, and BMP-7, in predicting kidney disease progression in people with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Megumi Oshima
- Department of Renal and Metabolic, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia.,Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan.,Renal Department, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Akinori Hara
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Min Jun
- Department of Renal and Metabolic, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Carol Pollock
- Renal Department, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Meg Jardine
- Department of Renal and Metabolic, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia.,Nephrology Unit, Concord Repatriation General Hospital, Sydney, New South Wales, Australia
| | - Stephen Harrap
- Department of Physiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | - Neil Poulter
- International Center for Circulatory Health, Imperial College, London, UK
| | - Mark E Cooper
- Departiment of Diabetes, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Mark Woodward
- Department of Renal and Metabolic, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia.,The George Institute for Global Health, University of Oxford, Oxford, UK.,Department of Epidemiology, Johns Hopkins University, Baltimore, Maryland, USA
| | - John Chalmers
- Department of Renal and Metabolic, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Vlado Perkovic
- Department of Renal and Metabolic, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Muh Geot Wong
- Department of Renal and Metabolic, The George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia.,Renal Department, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
18
|
Yarahmadi A, Shahrokhi SZ, Mostafavi-Pour Z, Azarpira N. MicroRNAs in diabetic nephropathy: From molecular mechanisms to new therapeutic targets of treatment. Biochem Pharmacol 2020; 189:114301. [PMID: 33203517 DOI: 10.1016/j.bcp.2020.114301] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
Despite considerable investigation in diabetic nephropathy (DN) pathogenesis and possible treatments, current therapies still do not provide competent prevention from disease progression to end-stage renal disease (ESRD) in most patients. Therefore, investigating exact molecular mechanisms and important mediators underlying DN may help design better therapeutic approaches for proper treatment. MicroRNAs (MiRNAs) are a class of small non-coding RNAs that play a crucial role in post-transcriptional regulation of many gene expression within the cells and present an excellent opportunity for new therapeutic approaches because their profile is often changed during many diseases, including DN. This review discusses the most important signaling pathways involved in DN and changes in miRNAs profile in each signaling pathway. We also suggest possible approaches for miRNA derived interventions for designing better treatment of DN.
Collapse
Affiliation(s)
- Amir Yarahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Zahra Shahrokhi
- Department of Laboratory Medicine, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Mostafavi-Pour
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Nakamura M, Satoh N, Tsukada H, Mizuno T, Fujii W, Suzuki A, Horita S, Nangaku M, Suzuki M. Stimulatory effect of insulin on H+-ATPase in the proximal tubule via the Akt/mTORC2 pathway. Physiol Int 2020; 107:376-389. [PMID: 32990653 DOI: 10.1556/2060.2020.00030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 06/12/2020] [Indexed: 11/19/2022]
Abstract
Purpose Acid-base transport in renal proximal tubules (PTs) is mainly sodium-dependent and conducted in coordination by the apical Na+/H+ exchanger (NHE3), vacuolar H+-adenosine triphosphatase (V-ATPase), and the basolateral Na+/HCO3- cotransporter. V-ATPase on PTs is well-known to play an important role in proton excretion. Recently we reported a stimulatory effect of insulin on these transporters. However, it is unclear whether insulin is involved in acid-base balance in PTs. Thus, we assessed the role of insulin in acid-base balance in PTs. Methods V-ATPase activity was evaluated using freshly isolated PTs obtained from mice, and specific inhibitors were then used to assess the signaling pathways involved in the observed effects. Results V-ATPase activity in PTs was markedly enhanced by insulin, and its activation was completely inhibited by bafilomycin (a V-ATPase-specific inhibitor), Akt inhibitor VIII, and PP242 (an mTORC1/2 inhibitor), but not by rapamycin (an mTORC1 inhibitor). V-ATPase activity was stimulated by 1 nm insulin by approximately 20% above baseline, which was completely suppressed by Akt1/2 inhibitor VIII. PP242 completely suppressed the insulin-mediated V-ATPase stimulation in mouse PTs, whereas rapamycin failed to influence the effect of insulin. Insulin-induced Akt phosphorylation in the mouse renal cortex was completely suppressed by Akt1/2 inhibitor VIII and PP242, but not by rapamycin. Conclusion Our results indicate that stimulation of V-ATPase activity by insulin in PTs is mediated via the Akt2/mTORC2 pathway. These results reveal the mechanism underlying the complex signaling in PT acid-base balance, providing treatment targets for renal disease.
Collapse
Affiliation(s)
- M Nakamura
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - N Satoh
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - H Tsukada
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - T Mizuno
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - W Fujii
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - A Suzuki
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan.,2Department of Nephrology, Japan Community Health care Organization (JCHO), Tokyo Yamate Medical Center, Tokyo, Japan
| | - S Horita
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - M Nangaku
- 1Division of Nephrology and Endocrinology, The University of Tokyo, Tokyo, Japan
| | - M Suzuki
- 3Health Service Center, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
20
|
SGLT2 Inhibition Mediates Protection from Diabetic Kidney Disease by Promoting Ketone Body-Induced mTORC1 Inhibition. Cell Metab 2020; 32:404-419.e6. [PMID: 32726607 DOI: 10.1016/j.cmet.2020.06.020] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/28/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022]
Abstract
SGLT2 inhibitors offer strong renoprotection in subjects with diabetic kidney disease (DKD). But the mechanism for such protection is not clear. Here, we report that in damaged proximal tubules of high-fat diet-fed ApoE-knockout mice, a model of non-proteinuric DKD, ATP production shifted from lipolysis to ketolysis dependent due to hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1). We further found that empagliflozin raised endogenous ketone body (KB) levels, and thus its use or treatment with 1,3-butanediol, a KB precursor, prevented decreases in renal ATP levels and organ damage in the mice. The renoprotective effect of empagliflozin was abolished by gene deletion of Hmgcs2, a rate-limiting enzyme of ketogenesis. Furthermore, KBs attenuated mTORC1-associated podocyte damage and proteinuria in diabetic db/db mice. Our findings show that SGLT2 inhibition-associated renoprotection is mediated by an elevation of KBs that in turn corrects mTORC1 hyperactivation that occurs in non-proteinuric and proteinuric DKD.
Collapse
|
21
|
Valdés A, Castro-Puyana M, García-Pastor C, Lucio-Cazaña FJ, Marina ML. Time-series proteomic study of the response of HK-2 cells to hyperglycemic, hypoxic diabetic-like milieu. PLoS One 2020; 15:e0235118. [PMID: 32579601 PMCID: PMC7313754 DOI: 10.1371/journal.pone.0235118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
During diabetes, renal proximal tubular cells (PTC) are exposed to a combination of high glucose and hypoxic conditions, which plays a relevant role in the development of diabetic kidney disease (DKD). In this work, a time-series proteomic study was performed to analyse the effect of a diabetic-like microenvironment induced changes on HK-2 cells, a human cell line derived from normal proximal tubular epithelial cells. Cells simultaneously exposed to high glucose (25 mM) and hypoxia (1% O2) were compared to cells in control conditions for up to 48 h. Diabetic conditions increased the percentage of death cells after 24 and 48 h, but no differences in the protein/cell ratio were found. The relative protein quantification using dimethyl-labeling and UHPLC-MS/MS analysis allowed the identification of 317, 296 and 259 proteins at 5, 24 and 48 h, respectively. The combination of statistical and time expression profile analyses indicated an increased expression of proteins involved in glycolysis, and a decrease of cytoskeletal-related proteins. The exposure of HK-2 cells to high glucose and hypoxia reproduces some of the effects of diabetes on PTC and, with the limitations inherent to in vitro studies, propose new mechanisms and targets to be considered in the management of DKD.
Collapse
Affiliation(s)
- Alberto Valdés
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, España
| | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, España
- Instituto de Investigación Química Andrés M del Rio, IQAR, Universidad de Alcalá, Alcalá de Henares, Madrid, España
| | - Coral García-Pastor
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, España
| | | | - María Luisa Marina
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Alcalá de Henares, Madrid, España
- Instituto de Investigación Química Andrés M del Rio, IQAR, Universidad de Alcalá, Alcalá de Henares, Madrid, España
- * E-mail:
| |
Collapse
|
22
|
Fan X, Li Z, Wang X, Wang J, Hao Z. Silencing of KPNA2 inhibits high glucose-induced podocyte injury via inactivation of mTORC1/p70S6K signaling pathway. Biochem Biophys Res Commun 2019; 521:1017-1023. [PMID: 31727365 DOI: 10.1016/j.bbrc.2019.10.200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
Dysregulation of apoptotic and autophagic function are characterized as the main pathogeneses of diabetic nephropathy (DN). It has been reported that Karyopherin Alpha 2 (KPNA2) contributes to apoptosis and autophagy in various cells, but its role in DN development remains unknown. The purpose of present study was to explore the function and underling mechanisms of KPNA2 in development of DN. In this study, 30 mM high glucose (HG)-evoked podocytes were used as DN model. The expression of KPNA2 was detected by qRT-PCR and Western blot assays. The cell viability was tested by CCK-8 kit, the apoptosis was measured using flow cytometry assay, the apoptotic and the autophagy related genes was detected by Western blot. Our results indicated that KPNA2 was significantly increased after HG stimulation. Knockdown of KPNA2 inhibited apoptosis, and promoted cell viability and autophagy in HG-treated podocytes. In addition, silencing of KPNA2 deactivated mTORC1/p70S6K pathway activation via regulating SLC1A5. Further results demonstrated that activating mTORC1/p70S6K pathway strongly ameliorated the effect of KPNA2 on cell viability, apoptosis and autophagy. Therefore, our study suggested that knockdown of KPNA2 rescued HG-induced injury via blocking activation of mTORC1/p70S6K pathway by mediating SLC1A5.
Collapse
Affiliation(s)
- Xiaobao Fan
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Medical College of Xi 'an Jiaotong University, Xi'an City, Shaanxi Province, 710061, China; Nephrotic Hemodialysis Center, Shaanxi Provincial People's Hospital, Xi'an City, Shaanxi Province, 710068, China
| | - Zhenjiang Li
- Nephrotic Hemodialysis Center, Shaanxi Provincial People's Hospital, Xi'an City, Shaanxi Province, 710068, China
| | - Xiaoming Wang
- Nephrotic Hemodialysis Center, Shaanxi Provincial People's Hospital, Xi'an City, Shaanxi Province, 710068, China
| | - Jing Wang
- Nephrotic Hemodialysis Center, Shaanxi Provincial People's Hospital, Xi'an City, Shaanxi Province, 710068, China
| | - Zhiming Hao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Medical College of Xi 'an Jiaotong University, Xi'an City, Shaanxi Province, 710061, China.
| |
Collapse
|
23
|
García-Pastor C, Benito-Martínez S, Moreno-Manzano V, Fernández-Martínez AB, Lucio-Cazaña FJ. Mechanism and Consequences of The Impaired Hif-1α Response to Hypoxia in Human Proximal Tubular HK-2 Cells Exposed to High Glucose. Sci Rep 2019; 9:15868. [PMID: 31676796 PMCID: PMC6825166 DOI: 10.1038/s41598-019-52310-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 10/16/2019] [Indexed: 01/01/2023] Open
Abstract
Renal hypoxia and loss of proximal tubular cells (PTC) are relevant in diabetic nephropathy. Hypoxia inhibits hypoxia-inducible factor-1α (HIF-1α) degradation, which leads to cellular adaptive responses through HIF-1-dependent activation of gene hypoxia-responsive elements (HRE). However, the diabetic microenvironment represses the HIF-1/HRE response in PTC. Here we studied the mechanism and consequences of impaired HIF-1α regulation in human proximal tubular HK-2 cells incubated in hyperglycemia. Inhibition at different levels of the canonical pathway of HIF-1α degradation did not activate the HIF-1/HRE response under hyperglycemia, except when proteasome was inhibited. Further studies suggested that hyperglycemia disrupts the interaction of HIF-1α with Hsp90, a known cause of proteasomal degradation of HIF-1α. Impaired HIF-1α regulation in cells exposed to hyperglycemic, hypoxic diabetic-like milieu led to diminished production of vascular endothelial growth factor-A and inhibition of cell migration (responses respectively involved in tubular protection and repair). These effects, as well as impaired HIF-1α regulation, were reproduced in normoglycemia in HK-2 cells incubated with microparticles released by HK-2 cells exposed to diabetic-like milieu. In summary, these results highlight the role of proteasome-dependent mechanisms of HIF-1α degradation on diabetes-induced HK-2 cells dysfunction and suggest that cell-derived microparticles may mediate negative effects of the diabetic milieu on PTC.
Collapse
Affiliation(s)
- Coral García-Pastor
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
| | - Selma Benito-Martínez
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | |
Collapse
|
24
|
Lv L, Zhang J, Tian F, Li X, Li D, Yu X. Arbutin protects HK-2 cells against high glucose-induced apoptosis and autophagy by up-regulating microRNA-27a. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2940-2947. [PMID: 31319730 DOI: 10.1080/21691401.2019.1640231] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lina Lv
- Department of Nephrology, Jining No.1 People's Hospital, Jining, China
- Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Jing Zhang
- Department of Endocrinology, Jining No.1 People's Hospital, Jining, China
| | - Fengqun Tian
- Department of Nephrology, Jiaxiang County Medicine Hospital, Jiaxiang County, Jining, China
| | - Xia Li
- Department of Nephrology, Jining No.1 People's Hospital, Jining, China
| | - Dandan Li
- Department of Endocrinology, Jining No.1 People's Hospital, Jining, China
| | - Xiulian Yu
- Department of Nephrology, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
25
|
Lu L, Liu Q, Wang P, Wu Y, Liu X, Weng C, Fang X, Li B, Cao X, Mao H, Wang L, Guan M, Wang W, Liu G. MicroRNA-148b regulates tumor growth of non-small cell lung cancer through targeting MAPK/JNK pathway. BMC Cancer 2019; 19:209. [PMID: 30849960 PMCID: PMC6408859 DOI: 10.1186/s12885-019-5400-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/21/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND MicroRNA-148b (miR-148b) has been detected in various types of tumors, and is generally viewed as a tumor suppressor. Our previous study found the decreased expression of miR-148b in human non small cell lung cancer (NSCLC) specimens and cell lines. However, the underlying mechanisms of miR-148b in regulating tumor progression remain unclear. METHODS Firstly animal experiments were performed to verify whether miR-148b could inhibit the tumor growth. Then, the underlying mechanisms were studied by transfecting recombinant plasmids containing a miR-148b mimic or a negative control (NC) mimic (shRNA control) into NSCLC cell lines PC14/B and A549 cells. Tumor cells transfected with unpackaged lentiviral vectors was used as blank control. Cell proliferation capabilities were measured by using CCK-8 kit and colony formation assay. Cell cycle arrest was compared to clarify the mechanism underlying the tumor cell proliferation. Annexin V-FITC Apoptosis Detection kit was applied to investigate the effect of miR-148b on cell apoptosis. Furthermore, western blot analysis were performed to study the targeting pathway. RESULTS We found that over-expression of miR148b could significantly inhibit tumor growth, while knocking down miR148b could obviously promote tumor growth. Further experiment showed that miR-148b inhibited tumor cell proliferation. Besides, over-expression of miR148b decreased the G2/M phase population of the cell cycle by preventing NSCLC cells from entering the mitotic phase and enhanced tumor cell apoptosis. Further western blot analysis indicated that miR148b could inhibit mitogen-activated protein kinase/Jun N-terminal kinase (MAPK/JNK) signaling by decreasing the expression of phosphorylated (p) JNK. CONCLUSIONS These results demonstrate that miR-148b could inhibit the tumor growth and act as tumor suppressor by inhibiting the proliferation and inducing apoptosis of NSCLC cells by blocking the MAPK/JNK pathway.
Collapse
Affiliation(s)
- Lin Lu
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Qiyao Liu
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Peipei Wang
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Yong Wu
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Chengyin Weng
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Xisheng Fang
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Baoxiu Li
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Xiaofei Cao
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Haibo Mao
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Lina Wang
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Mingmei Guan
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| | - Wei Wang
- Department of Experimental Research and State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, 510080 Guangdong China
| | - Guolong Liu
- Department of Medical Oncology, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong China
- Department of Medical Oncology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180 Guangdong China
| |
Collapse
|
26
|
Astragaloside IV inhibits palmitate-mediated oxidative stress and fibrosis in human glomerular mesangial cells via downregulation of CD36 expression. Pharmacol Rep 2018; 71:319-329. [PMID: 30826573 DOI: 10.1016/j.pharep.2018.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The increased influx of free fatty acids (FFAs) into the kidney is a risk factor for diabetes nephropathy (DN). In the present study we investigated the effects of astragaloside IV (AS-IV) on FFA-induced lipid accumulation, oxidative stress, and activation of TGF-β1 signaling in human glomerular mesangial cells (HMCs). METHODS A DN model was induced in Sprague Dawley rats by the administration of a high-fat diet and streptozocin, and HMCs were stimulated with palmitate. Lipid accumulation and FFA uptake were detected using Oil Red O and BODIPY™ FL C16 staining, respectively. The expression levels of TGF-β1, p-Smad2/3, FN, Col4 A1, NOX4, p22phox, and CD36 were evaluated by western blotting or immunofluorescence/immunohistochemistry. The level of reactive oxygen species (ROS) was detected using 2',7'-dichlorofluorescein diacetate and dihydroethidium. RESULTS Exposure to palmitate induced marked lipid accumulation in HMCs, whereas co-treatment with AS-IV significantly attenuated this phenomenon. Moreover, AS-IV suppressed palmitate-induced expression of TGF-β1, p-Smad2/3, FN, Col4 A1, NOX4, and p22phox, in addition to ROS production. Notably, AS-IV reduced the palmitate-induced expression of CD36 in HMCs and DN rats. Treatment of HMCs with the CD36 inhibitor, sulfo-N-succinimidyl oleate (SSO), significantly attenuated FFA uptake, oxidative stress, and fibrosis. Nevertheless, the combined use of SSO and AS-IV did not enhance the efficacy. CONCLUSION AS-IV inhibited palmitate-induced HMCs oxidative stress and fibrosis via the downregulation of CD36 expression, mediating FFA uptake and lipid accumulation.
Collapse
|
27
|
Dewanjee S, Bhattacharjee N. MicroRNA: A new generation therapeutic target in diabetic nephropathy. Biochem Pharmacol 2018; 155:32-47. [DOI: 10.1016/j.bcp.2018.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
|
28
|
Ardestani A, Lupse B, Kido Y, Leibowitz G, Maedler K. mTORC1 Signaling: A Double-Edged Sword in Diabetic β Cells. Cell Metab 2018; 27:314-331. [PMID: 29275961 DOI: 10.1016/j.cmet.2017.11.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 11/15/2017] [Indexed: 12/21/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a central regulator of metabolic and nutrient cues that integrates environmental inputs into downstream signaling pathways to control cellular metabolism, growth, and survival. While numerous in vitro and in vivo studies reported the positive functions of mTORC1 in the regulation of β cell survival and proliferation under physiological conditions, more recent work demonstrates the opposite in the long term; this is exemplified by the constitutive inappropriate hyper-activation of mTORC1 in diabetic islets or β cells under conditions of increased β cell stress and metabolic demands. These recent findings uncover mTORC1's importance as an emerging significant player in the development and progression of β cell failure in type 2 diabetes and suggest that mTORC1 may act as a "double edge sword" in the regulation of β cell mass and function in response to metabolic stress such as nutrient overload and insulin resistance.
Collapse
Affiliation(s)
- Amin Ardestani
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| | - Blaz Lupse
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany
| | - Yoshiaki Kido
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; Division of Metabolism and Disease, Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Gil Leibowitz
- Endocrinology and Metabolism Service and the Hadassah Diabetes Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Kathrin Maedler
- University of Bremen, Centre for Biomolecular Interactions Bremen, Bremen 28359, Germany.
| |
Collapse
|
29
|
Du C, Yao F, Ren Y, Du Y, Wei J, Wu H, Duan H, Shi Y. SOCS-1 is involved in TNF-α-induced mitochondrial dysfunction and apoptosis in renal tubular epithelial cells. Tissue Cell 2017; 49:537-544. [PMID: 28732559 DOI: 10.1016/j.tice.2017.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/09/2017] [Accepted: 06/29/2017] [Indexed: 01/07/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is suggested to induce mitochondrial dysfunction and apoptosis of renal tubular epithelial cells that possibly exacerbates renal function in chronic kidney disease (CKD). Here we investigated whether suppressor of cytokine signaling-1 (SOCS-1), an inhibitor of cytokine signaling, was involved in TNF-α-induced human renal tubular epithelial cells (HKCs) oxidative stress and apoptosis. TNF-α promoted the protein and mRNA expression of SOCS-1 in a time and dose dependent manner, along with increased cell apoptosis and activation of apoptosis signal regulating kinase-1(ASK1) in HKCs. Furthermore, overexpression of SOCS-1 in HKCs reduced TNF-α-mediated oxidative stress and apoptosis. Meanwhile, We also found that overexpression of SOCS-1 could regulate the activity of JAK/STAT signaling pathway. In addition, a specific JAK2 inhibitor, AG490, that both attenuated TNF-α-induced oxidative stress, also reduced apoptosis. Taken together, overexpression of SOCS-1 prevented TNF-α-mediated cell oxidative stress and apoptosis may be via suppression of JAK/STAT signaling pathway activation in HKCs.
Collapse
Affiliation(s)
- Chunyang Du
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Fang Yao
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yunzhuo Ren
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yunxia Du
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Jinying Wei
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Haijiang Wu
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Huijun Duan
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China.
| | - Yonghong Shi
- Department of Pathology and Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
30
|
Inoki K. Aberrant mTORC1 activation kills tubular cells by inactivating miR148b-3p. Kidney Int 2016; 90:1146-1148. [PMID: 27884303 PMCID: PMC5542052 DOI: 10.1016/j.kint.2016.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 11/29/2022]
Abstract
A new study by Kuwagata et al. now shows that aberrant activation of the mechanistic target of rapamycin complex 1 in renal tubular cells causes their injury and cell death by enhancing endoplasmic reticulum stress and cell death pathway under diabetic conditions. The study has revealed a novel molecular mechanism in which mechanistic target of rapamycin complex 1 stimulates the tumor necrosis factor signaling by attenuating miR-148b-3p, thereby deteriorating renal tubular cell dysfunction under diabetic conditions.
Collapse
Affiliation(s)
- Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Division of Nephrology, Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA.
| |
Collapse
|