1
|
Zhao Y, Zhang Y, Meng B, Luo M, Li G, Liu F, Chang C, Dai X, Fang X. A Novel Integrated Pipeline for Site-Specific Quantification of N-glycosylation. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:213-226. [PMID: 39398429 PMCID: PMC11467155 DOI: 10.1007/s43657-023-00150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 10/15/2024]
Abstract
The site-specific N-glycosylation changes of human plasma immunoglobulin gamma molecules (IgGs) have been shown to modulate the immune response and could serve as potential biomarkers for the accurate diagnosis of various diseases. However, quantifying intact N-glycopeptides accurately in large-scale clinical samples remains a challenge, and the quantitative N-glycosylation of plasma IgGs in patients with chronic kidney diseases (CKDs) has not yet been studied. In this study, we present a novel integrated intact N-glycopeptide quantitative pipeline (termed GlycoQuant), which combines our recently developed mass spectrometry fragmentation method (EThcD-sceHCD) and an intact N-glycopeptide batch quantification software tool (the upgraded PANDA v.1.2.5). We purified and digested human plasma IgGs from 58 healthy controls (HCs), 48 patients with membranous nephropathy (MN), and 35 patients with IgA nephropathy (IgAN) within an hour. Then, we analyzed the digested peptides without enrichment using EThcD-sceHCD-MS/MS, which provided higher spectral quality and greater identified depth. Using upgraded PANDA, we performed site-specific N-glycosylation quantification of IgGs. Several quantified intact N-glycopeptides not only distinguished CKDs from HCs, but also different types of CKD (MN and IgAN) and may serve as accurate diagnostic tools for renal tubular function. In addition, we proved the applicability of this pipeline to complex samples by reanalyzing the intact N-glycopeptides from cell, urine, plasma, and tissue samples that we had previously identified. We believe that this pipeline can be applied to large-scale clinical N-glycoproteomic studies, facilitating the discovery of novel glycosylated biomarkers. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43657-023-00150-w.
Collapse
Affiliation(s)
- Yang Zhao
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| | - Yong Zhang
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Bo Meng
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| | - Mengqi Luo
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People’s Hospital, Sichuan Clinical Research Center for Kidney Diseases, University of Electronic Science and Technology of China, Chengdu, 611731 China
| | - Fang Liu
- Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
- Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, 102206 China
| | - Xinhua Dai
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, 102206 China
| |
Collapse
|
2
|
Lin T, Chen Z, Luo M, Zhao Y, Zeng W, Zheng S, Su T, Zhong Y, Wang S, Jin Y, Hu L, Zhao W, Li J, Wang X, Wu C, Li D, Liu F, Li G, Yang H, Zhang Y. Characterization of site-specific N-glycosylation signatures of isolated uromodulin from human urine. Analyst 2023; 148:5041-5049. [PMID: 37667671 DOI: 10.1039/d3an01018j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Uromodulin (Umod, Tamm-Horsfall protein) is the most abundant urinary N-glycoprotein produced exclusively by the kidney. It can form filaments to antagonize the adhesion of uropathogens. However, the site-specific N-glycosylation signatures of Umod in healthy individuals and patients with IgA nephropathy (IgAN) remain poorly understood due to the lack of suitable isolation and analytical methods. In this study, we first presented a simple and fast method based on diatomaceous earth adsorption to isolate Umod. These isolated glycoproteins were digested by trypsin and/or Glu-C. Intact N-glycopeptides with or without HILIC enrichment were analyzed using our developed EThcD-sceHCD-MS/MS. Based on the optimized workflow, we identified a total of 780 unique intact N-glycopeptides (7 N-glycosites and 152 N-glycan compositions) from healthy individuals. As anticipated, these glycosites exhibited glycoform heterogeneity. Almost all N-glycosites were modified completely by the complex type, except for one N-glycosite (N275), which was nearly entirely occupied by the high-mannose type for mediating Umod's antiadhesive activity. Then, we compared the N-glycosylation of Umod between healthy controls (n = 9) and IgAN patients (n = 9). The N-glycosylation of Umod in IgAN patients will drastically decrease and be lost. Finally, we profiled the most comprehensive site-specific N-glycosylation map of Umod and revealed its alterations in IgAN patients. Our method provides a high-throughput workflow for characterizing the N-glycosylation of Umod, which can aid in understanding its roles in physiology and pathology, as well as serving as a potential diagnostic tool for evolution of renal tubular function.
Collapse
Affiliation(s)
- Tianhai Lin
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Department of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhuo Chen
- Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mengqi Luo
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yang Zhao
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Wenjuan Zeng
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Shanshan Zheng
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Tao Su
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yi Zhong
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Shisheng Wang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Youmei Jin
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Liqiang Hu
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wanjun Zhao
- Division of Thyroid Surgery, Department of General Surgery of Nursing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiaxu Li
- School of Nursing, Chengde Medical University, Chengde, Hebei 067000, China
| | - Xuanyi Wang
- Mingde College, Zhangjiakou University, Zhangjiakou, Hebei 075000, China
| | - Changwei Wu
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Dapeng Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fang Liu
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Hao Yang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Zhang
- Department of Nephrology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Transplant Center and NHC Key Lab of Transplant Engineering and Immunology, Regenerative Medical Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Zhang Y, Zheng S, Mao Y, Cao W, Zhao L, Wu C, Cheng J, Liu F, Li G, Yang H. Systems analysis of plasma IgG intact N-glycopeptides from patients with chronic kidney diseases via EThcD-sceHCD-MS/MS. Analyst 2021; 146:7274-7283. [PMID: 34747425 DOI: 10.1039/d1an01657a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Immunoglobulin G (IgG) molecules modulate an immune response. However, site-specific N-glycosylation signatures of plasma IgG in patients with chronic kidney disease (CKD) remain unclear. This study aimed to propose a novel method to explore the N-glycosylation pattern of IgG and to compare it with reported methods. We separated human plasma IgG from 58 healthy controls (HC) and 111 patients with CKD. Purified IgG molecules were digested by trypsin. Tryptic peptides without enrichment of intact N-glycopeptides were analyzed using a combination of electron-transfer/higher-energy collisional dissociation (EThcD) and stepped collision energy/higher-energy collisional dissociation (sceHCD) mass spectrometry (EThcD-sceHCD-MS/MS). This resulted in higher spectral quality, more informative fragment ions, higher Byonic score, and nearly twice the depth of intact N-glycopeptide identification than sceHCD or EThcD alone. Site-specific N-glycosylation mapping revealed that intact N-glycopeptides were differentially expressed in HC and CKD patients; thus, it can be a diagnostic tool. This study provides a method for the determination of glycosylation patterns in CKD and a framework for understanding the role of IgG in the pathophysiology of CKD. Data are available via ProteomeXchange with identifier PXD027174.
Collapse
Affiliation(s)
- Yong Zhang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China. .,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shanshan Zheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yonghong Mao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Cao
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lijun Zhao
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Changwei Wu
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Jingqiu Cheng
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Fang Liu
- Division of Nephrology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guisen Li
- Renal Department and Institute of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Sichuan Clinical Research Center for Kidney Diseases, Chengdu 611731, China.
| | - Hao Yang
- NHC Key Laboratory of Transplant Engineering and Immunology, Institutes for Systems Genetics; National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China. .,Sichuan Provincial Engineering Laboratory of Pathology in Clinical Application, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|