1
|
Ameer OZ. Hypertension in chronic kidney disease: What lies behind the scene. Front Pharmacol 2022; 13:949260. [PMID: 36304157 PMCID: PMC9592701 DOI: 10.3389/fphar.2022.949260] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/26/2022] [Indexed: 12/04/2022] Open
Abstract
Hypertension is a frequent condition encountered during kidney disease development and a leading cause in its progression. Hallmark factors contributing to hypertension constitute a complexity of events that progress chronic kidney disease (CKD) into end-stage renal disease (ESRD). Multiple crosstalk mechanisms are involved in sustaining the inevitable high blood pressure (BP) state in CKD, and these play an important role in the pathogenesis of increased cardiovascular (CV) events associated with CKD. The present review discusses relevant contributory mechanisms underpinning the promotion of hypertension and their consequent eventuation to renal damage and CV disease. In particular, salt and volume expansion, sympathetic nervous system (SNS) hyperactivity, upregulated renin–angiotensin–aldosterone system (RAAS), oxidative stress, vascular remodeling, endothelial dysfunction, and a range of mediators and signaling molecules which are thought to play a role in this concert of events are emphasized. As the control of high BP via therapeutic interventions can represent the key strategy to not only reduce BP but also the CV burden in kidney disease, evidence for major strategic pathways that can alleviate the progression of hypertensive kidney disease are highlighted. This review provides a particular focus on the impact of RAAS antagonists, renal nerve denervation, baroreflex stimulation, and other modalities affecting BP in the context of CKD, to provide interesting perspectives on the management of hypertensive nephropathy and associated CV comorbidities.
Collapse
Affiliation(s)
- Omar Z. Ameer
- Department of Pharmaceutical Sciences, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
- Department of Biomedical Sciences, Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Omar Z. Ameer,
| |
Collapse
|
2
|
Sata Y, Burke SL, Eikelis N, Watson AMD, Gueguen C, Jackson KL, Lambert GW, Lim K, Denton KM, Schlaich MP, Head GA. Renal Deafferentation Prevents Progression of Hypertension and Changes to Sympathetic Reflexes in a Rabbit Model of Chronic Kidney Disease. Hypertension 2021; 78:1310-1321. [PMID: 34538104 DOI: 10.1161/hypertensionaha.121.17037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yusuke Sata
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Human Neurotransmitters Laboratory (Y.S., M.P.S., G.W.L., N.E.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Faculty of Medicine, Nursing and Health Sciences, Central Clinical School (Y.S.), Monash University, Melbourne, VIC, Australia.,Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia (Y.S.)
| | - Sandra L Burke
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nina Eikelis
- Human Neurotransmitters Laboratory (Y.S., M.P.S., G.W.L., N.E.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia (N.E., G.W.L.)
| | - Anna M D Watson
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School (A.M.D.W.), Monash University, Melbourne, VIC, Australia
| | - Cindy Gueguen
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kristy L Jackson
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (K.L.J), Monash University, Melbourne, VIC, Australia
| | - Gavin W Lambert
- Human Neurotransmitters Laboratory (Y.S., M.P.S., G.W.L., N.E.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Iverson Health Innovation Research Institute and School of Health Sciences, Swinburne University of Technology, Hawthorn, VIC, Australia (N.E., G.W.L.)
| | - Kyungjoon Lim
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia (K.L.)
| | - Kate M Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia (K.M.D.)
| | - Markus P Schlaich
- Human Neurotransmitters Laboratory (Y.S., M.P.S., G.W.L., N.E.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Departments of Cardiology and Nephrology, Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, University of Western Australia, Royal Perth Hospital (M.P.S.)
| | - Geoffrey A Head
- Neuropharmacology Laboratory (Y.S., S.L.B., A.M.D.W., C.G., K.L.J., K.L., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology (G.A.H.), Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Sata Y, Burke SL, Gueguen C, Lim K, Watson AM, Jha JC, Eikelis N, Jackson KL, Lambert GW, Denton KM, Schlaich MP, Head GA. Contribution of the Renal Nerves to Hypertension in a Rabbit Model of Chronic Kidney Disease. Hypertension 2020; 76:1470-1479. [DOI: 10.1161/hypertensionaha.120.15769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Overactivity of the sympathetic nervous system and high blood pressure are implicated in the development and progression of chronic kidney disease (CKD) and independently predict cardiovascular events in end-stage renal disease. To assess the role of renal nerves, we determined whether renal denervation (RDN) altered the hypertension and sympathoexcitation associated with a rabbit model of CKD. The model involves glomerular layer lesioning and uninephrectomy, resulting in renal function reduced by one-third and diuresis. After 3-week CKD, blood pressure was 13±2 mm Hg higher than at baseline (P<0.001), and compared with sham control rabbits, renal sympathetic nerve activity was 1.2±0.5 normalized units greater (P=0.01). The depressor response to ganglion blockade was also +8.0±3 mm Hg greater, but total norepinephrine spillover was 8.7±3.7 ng/min lower (bothP<0.05). RDN CKD rabbits only increased blood pressure by 8.0±1.5 mm Hg. Renal sympathetic activity, the response to ganglion blockade and diuresis were similar to sham denervated rabbits (non-CKD). CKD rabbits had intact renal sympathetic baroreflex gain and range, as well as normal sympathetic responses to airjet stress. However, hypoxia-induced sympathoexcitation was reduced by −9±0.4 normalized units. RDN did not alter the sympathetic response to hypoxia or airjet stress. CKD increased oxidative stress markers Nox5 and MCP-1 (monocyte chemoattractant protein-1) in the kidney, but RDN had no effect on these measures. Thus, RDN is an effective treatment for hypertension in this model of CKD without further impairing renal function or altering the normal sympathetic reflex responses to various environmental stimuli.
Collapse
Affiliation(s)
- Yusuke Sata
- From the Neuropharmacology Laboratory (Y.S., S.L.B., C.G., K.L., K.L.J., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Human Neurotransmitters Laboratory (Y.S., M.P.S.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Faculty of Medicine, Nursing and Health Sciences, Central Clinical School (Y.S.), Monash University, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia (Y.S.)
| | - Sandra L. Burke
- From the Neuropharmacology Laboratory (Y.S., S.L.B., C.G., K.L., K.L.J., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Cindy Gueguen
- From the Neuropharmacology Laboratory (Y.S., S.L.B., C.G., K.L., K.L.J., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Kyungjoon Lim
- From the Neuropharmacology Laboratory (Y.S., S.L.B., C.G., K.L., K.L.J., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia (K.L.)
| | - Anna M.D. Watson
- Department of Diabetes, Central Clinical School (A.M.D.W., J.C.J.), Monash University, Melbourne, VIC, Australia
| | - Jay C. Jha
- Department of Diabetes, Central Clinical School (A.M.D.W., J.C.J.), Monash University, Melbourne, VIC, Australia
| | - Nina Eikelis
- Iverson Health Innovation Research Institute and School of Health Science, Swinburne University of Technology, Hawthorn, VIC, Australia (N.E., G.W.L.)
| | - Kristy L. Jackson
- From the Neuropharmacology Laboratory (Y.S., S.L.B., C.G., K.L., K.L.J., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Gavin W. Lambert
- Iverson Health Innovation Research Institute and School of Health Science, Swinburne University of Technology, Hawthorn, VIC, Australia (N.E., G.W.L.)
| | - Kate M. Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia (K.M.D.)
| | - Markus P. Schlaich
- Human Neurotransmitters Laboratory (Y.S., M.P.S.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Dobney Hypertension Centre, School of Medicine, Royal Perth Hospital Unit, University of Western Australia (M.P.S.)
- Departments of Cardiology (M.P.S.), Royal Perth Hospital, Western Australia, Australia
- Nephrology (M.P.S.), Royal Perth Hospital, Western Australia, Australia
| | - Geoffrey A. Head
- From the Neuropharmacology Laboratory (Y.S., S.L.B., C.G., K.L., K.L.J., G.A.H.), Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology (G.A.H.), Monash University, Melbourne, VIC, Australia
| |
Collapse
|