1
|
Bai Y, Huang L, Li Y, Zhou S, Li L, Jiang H, Nie S, Feng Z, Su L. Neutrophil/Lymphocyte Ratio and All-Cause Mortality in Diabetic Kidney Disease: A Retrospective Cohort Study. J Inflamm Res 2024; 17:10739-10753. [PMID: 39677293 PMCID: PMC11639986 DOI: 10.2147/jir.s483637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024] Open
Abstract
Background Diabetic kidney disease (DKD) is a significant contributor to the development of end-stage renal disease and cardiovascular disease (CVD), with inflammation being a critical factor in its pathogenesis. The aim of this study is to examine the relationship between the neutrophil-to-lymphocyte ratio (NLR), a new inflammatory marker, and mortality from all causes and CVD in patients with DKD. Methods This multicenter, retrospective cohort study utilized data from the China Renal Data System (CRDS) on patients with DKD hospitalized between January 1, 2000, and February 28, 2023. The patients' demographic information, along with their initial clinical and laboratory results, were collected and recorded. Follow-up continued until July 1, 2023, and patients were categorized into two groups based on the median baseline NLR. The Cox proportional hazards regression, Restricted cubic spline (RCS) curves, The Kaplan-Meier curve, Fine-Gray competing risk model, Time-dependent ROC and subgroup analysis were used to analyze the association between all-cause mortality and CVD mortality in patients having DKD with varying NLR. Results This study included 11,427 patients who had been clinically diagnosed with DKD. Baseline NLR was associated with C-reactive protein, procalcitonin, high-sensitivity C-reactive protein, plasma D-dimer, cystatin C, creatinine, urea nitrogen, brain natriuretic peptide, and eGFR. We selected the demographic characteristics, differential factors from univariate analysis, and clinically DKD-related laboratory indicators as covariates for Cox analysis. Results indicated that NLR was an independent risk factor for both all-cause and CVD mortality after adjusting for the relevant variables. The risk of all-cause death and CVD death in the high NLR group was 4.688 and 2.141 times higher, respectively, compared to the low NLR group (HR = 4.688, 95% CI 1.153-19.061, P = 0.031; HR = 2.141, 95% CI 1.257-3.644, P = 0.005). However, potential confounding factors and biases, such as unmeasured variables and the influence of treatment interventions, could not be fully accounted for. Conclusion NLR can independently predict the risk of all-cause and CVD mortality in patients with DKD. Identifying individuals with a high NLR and providing further intervention could be crucial measures to reduce both all-cause and CVD mortality. However, the results should be interpreted with caution due to the study's limitations.
Collapse
Affiliation(s)
- Yihua Bai
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, 650101, People’s Republic of China
| | - Lilan Huang
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, 650101, People’s Republic of China
| | - Yanqin Li
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- National Clinical Research Center for Kidney Disease, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- State Key Laboratory of Organ Failure Research, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, Guangdong Province, 510515, People’s Republic of China
| | - Shiyu Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- National Clinical Research Center for Kidney Disease, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- State Key Laboratory of Organ Failure Research, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, Guangdong Province, 510515, People’s Republic of China
| | - Luohua Li
- Department of Nephrology, Jiujiang No. 1 People’s Hospital, Jiujiang, Jiangxi Province, 332000, People’s Republic of China
| | - Hongying Jiang
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, 650101, People’s Republic of China
| | - Sheng Nie
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- National Clinical Research Center for Kidney Disease, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- State Key Laboratory of Organ Failure Research, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, Guangdong Province, 510515, People’s Republic of China
| | - Zhijian Feng
- Department of Nephrology, The Second Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, 650101, People’s Republic of China
| | - Licong Su
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- National Clinical Research Center for Kidney Disease, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- State Key Laboratory of Organ Failure Research, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- Guangdong Provincial Institute of Nephrology, Guangzhou, Guangdong Province, 510515, People’s Republic of China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou, Guangdong Province, 510515, People’s Republic of China
| |
Collapse
|
2
|
Wang M, Yao F, Chen N, Wu T, Yan J, Du L, Zeng S, Du C. The advance of single cell transcriptome to study kidney immune cells in diabetic kidney disease. BMC Nephrol 2024; 25:412. [PMID: 39550562 PMCID: PMC11568691 DOI: 10.1186/s12882-024-03853-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/05/2024] [Indexed: 11/18/2024] Open
Abstract
Diabetic kidney disease (DKD) is a prevalent microvascular complication of diabetes mellitus and a primary cause of end-stage renal disease (ESRD). Increasing studies suggest that immune cells are involved in regulating renal inflammation, which contributes to the progression of DKD. Compared with conventional methods, single-cell sequencing technology is more developed technique that has advantages in resolving cellular heterogeneity, parallel multi-omics studies, and discovering new cell types. ScRNA-seq helps researchers to analyze specifically gene expressions, signaling pathways, intercellular communication as well as their regulations in various immune cells of kidney biopsy and urine samples. It is still challenging to investigate the function of each cell type in the pathophysiology of kidney due to its complex and heterogeneous structure and function. Here, we discuss the application of single-cell transcriptomics in the field of DKD and highlight several recent studies that explore the important role of immune cells including macrophage, T cells, B cells etc. in DKD through scRNA-seq analyses. Through combing the researches of scRNA-seq on immune cells in DKD, this review provides novel perspectives on the pathogenesis and immune therapeutic strategy for DKD.
Collapse
Affiliation(s)
- Mengjia Wang
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
| | - Fang Yao
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Ning Chen
- Department of Pathology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ting Wu
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Jiaxin Yan
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Linshan Du
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shijie Zeng
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China
| | - Chunyang Du
- Department of Pathology, Key Laboratory of Kidney Diseases of Hebei Province, Hebei Medical University, Shijiazhuang, 050017, China.
- Center of Metabolic Diseases and Cancer Research, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
3
|
Peng QY, An Y, Jiang ZZ, Xu Y. The Role of Immune Cells in DKD: Mechanisms and Targeted Therapies. J Inflamm Res 2024; 17:2103-2118. [PMID: 38601771 PMCID: PMC11005934 DOI: 10.2147/jir.s457526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
Diabetic kidney disease (DKD), is a common microvascular complication and a major cause of death in patients with diabetes. Disorders of immune cells and immune cytokines can accelerate DKD development of in a number of ways. As the kidney is composed of complex and highly differentiated cells, the interactions among different cell types and immune cells play important regulatory roles in disease development. Here, we summarize the latest research into the molecular mechanisms underlying the interactions among various immune and renal cells in DKD. In addition, we discuss the most recent studies related to single cell technology and bioinformatics analysis in the field of DKD. The aims of our review were to explore immune cells as potential therapeutic targets in DKD and provide some guidance for future clinical treatments.
Collapse
Affiliation(s)
- Qiu-Yue Peng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Ying An
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Sichuan, People’s Republic of China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
4
|
Hu X, Chen S, Ye S, Chen W, Zhou Y. New insights into the role of immunity and inflammation in diabetic kidney disease in the omics era. Front Immunol 2024; 15:1342837. [PMID: 38487541 PMCID: PMC10937589 DOI: 10.3389/fimmu.2024.1342837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Diabetic kidney disease (DKD) is becoming the leading cause of chronic kidney disease, especially in the industrialized world. Despite mounting evidence has demonstrated that immunity and inflammation are highly involved in the pathogenesis and progression of DKD, the underlying mechanisms remain incompletely understood. Substantial molecules, signaling pathways, and cell types participate in DKD inflammation, by integrating into a complex regulatory network. Most of the studies have focused on individual components, without presenting their importance in the global or system-based processes, which largely hinders clinical translation. Besides, conventional technologies failed to monitor the different behaviors of resident renal cells and immune cells, making it difficult to understand their contributions to inflammation in DKD. Recently, the advancement of omics technologies including genomics, epigenomics, transcriptomics, proteomics, and metabolomics has revolutionized biomedical research, which allows an unbiased global analysis of changes in DNA, RNA, proteins, and metabolites in disease settings, even at single-cell and spatial resolutions. They help us to identify critical regulators of inflammation processes and provide an overview of cell heterogeneity in DKD. This review aims to summarize the application of multiple omics in the field of DKD and emphasize the latest evidence on the interplay of inflammation and DKD revealed by these technologies, which will provide new insights into the role of inflammation in the pathogenesis of DKD and lead to the development of novel therapeutic approaches and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xinrong Hu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Sixiu Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Siyang Ye
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| | - Yi Zhou
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, China
| |
Collapse
|
5
|
Mao ZH, Gao ZX, Liu Y, Liu DW, Liu ZS, Wu P. Single-cell transcriptomics: A new tool for studying diabetic kidney disease. Front Physiol 2023; 13:1053850. [PMID: 36685214 PMCID: PMC9846140 DOI: 10.3389/fphys.2022.1053850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
The kidney is a complex organ comprising various functional partitions and special cell types that play important roles in maintaining homeostasis in the body. Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease and is an independent risk factor for cardiovascular diseases. Owing to the complexity and heterogeneity of kidney structure and function, the mechanism of DKD development has not been fully elucidated. Single-cell sequencing, including transcriptomics, epigenetics, metabolomics, and proteomics etc., is a powerful technology that enables the analysis of specific cell types and states, specifically expressed genes or pathways, cell differentiation trajectories, intercellular communication, and regulation or co-expression of genes in various diseases. Compared with other omics, RNA sequencing is a more developed technique with higher utilization of tissues or samples. This article reviewed the application of single-cell transcriptomics in the field of DKD and highlighted the key signaling pathways in specific tissues or cell types involved in the occurrence and development of DKD. The comprehensive understanding of single-cell transcriptomics through single-cell RNA-seq and single-nucleus RNA-seq will provide us new insights into the pathogenesis and treatment strategy of various diseases including DKD.
Collapse
Affiliation(s)
- Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Yong Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| |
Collapse
|