1
|
Li S, Yang H, Zhang B, Li L, Li X. 5-methoxytryptophan ameliorates renal ischemia/reperfusion injury by alleviating endoplasmic reticulum stress-mediated apoptosis through the Nrf2/HO-1 pathway. Front Pharmacol 2025; 16:1506482. [PMID: 40297140 PMCID: PMC12034636 DOI: 10.3389/fphar.2025.1506482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Background Renal ischemia/reperfusion (I/R) injury is a prevalent clinical complication characterized by high incidence and mortality rates. The endogenous metabolite, 5-Methoxytryptophan (5-MTP), derived from tryptophan, possesses anti-inflammatory and antioxidant properties. However, its role in renal I/R injury remains unclear. In this study, we investigated whether 5-MTP could protect the kidney from I/R injury by ameliorating endoplasmic reticulum stress (ERS)-mediated apoptosis through the Nrf2/HO-1 pathway. Methods and results We established models to examine renal I/R injury in C57BL/6J mice with bilateral renal pedicles clamped and HK-2 cells subjected to hypoxia/reoxygenation (H/R). The administration of 5-MTP improved renal tissue damage and kidney dysfunction impairment and reduced inflammation and oxidative stress. Moreover, 5-MTP attenuated ERS and ERS-mediated apoptosis, while upregulating Nrf2 and HO-1 expression. Additionally, Nrf2-deficient mice and cells were used to determine whether the Nrf2/HO-1 pathway was involved in the role of 5-MTP in alleviating ERS-mediated apoptosis. Nrf2 deficiency led to a partial reduction in the suppressive effects of 5-MTP on inflammation, oxidative stress, and ERS-mediated apoptosis. Conclusion Our findings suggest that 5-MTP alleviates renal I/R injury by inhibiting ERS-related apoptosis via the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Shaona Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongjuan Yang
- Department of Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bing Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lingyu Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangkun Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Wang S, Lei Z, Chen S, Xiang A, Zou Y, Liu Y. Dioscin exerts nephroprotective effects by attenuating oxidative stress and necroptosis-induced inflammation. Int Immunopharmacol 2024; 140:112885. [PMID: 39116496 DOI: 10.1016/j.intimp.2024.112885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Acute kidney injury (AKI) is a syndrome characterized by the rapid loss of the renal function and has high morbidity and mortality worldwide, yet there is no satisfactory means of prevention and treatment at present. Dioscin, a natural steroidal saponin, has been found to have antioxidant, anti-inflammatory and anti-apoptotic effects. In this experiment, we pretreated cisplatin-induced AKI rats with dioscin and found that dioscin significantly enhanced renal function and reduced renal pathological injury in AKI rats. We also found that dioscin improved renal antioxidant capacity by suppressing the accumulation of oxides such as ROS, MDA and H2O2, and increasing the levels of antioxidant enzymes SOD and CAT. In addition, dioscin down-regulated the expression of inflammation-related proteins (IL-1β, TNF-α, NF-κB) and necroptosis-critical proteins RIP1/RIP3, whereas up-regulated Caspase-8 protein levels in the kidney of AKI rats. Mechanistically, dioscin promoted the nuclear transcription of Nrf2 and activated Nrf2/HO-1 signaling axis to play a positive role in the kidney of AKI rats, while the reno-protective effect of dioscin was significantly attenuated after inhibiting Nrf2. In conclusion, our data indicate that dioscin decreases cisplatin-induced renal oxidative stress and thwarts necroptosis induced inflammation via regulating the Nrf2/HO-1pathway. Our study provides more data and theoretical support for the study of natural drugs to improve AKI.
Collapse
Affiliation(s)
- Shuang Wang
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, PR China; College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhuofan Lei
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Shan Chen
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Anqi Xiang
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yanlu Zou
- College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, PR China
| | - Yun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Province Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Harbin 150030, PR China.
| |
Collapse
|
3
|
Yao H, Xie Y, Li C, Liu W, Yi G. Mitochondria-Associated Organelle Crosstalk in Myocardial Ischemia/Reperfusion Injury. J Cardiovasc Transl Res 2024; 17:1106-1118. [PMID: 38807004 DOI: 10.1007/s12265-024-10523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Organelle damage is a significant contributor to myocardial ischemia/reperfusion (I/R) injury. This damage often leads to disruption of endoplasmic reticulum protein regulatory programs and dysfunction of mitochondrial energy metabolism. Mitochondria and endoplasmic reticulum are seamlessly connected through the mitochondrial-associated endoplasmic reticulum membrane (MAM), which serves as a crucial site for the exchange of organelles and metabolites. However, there is a lack of reports regarding the communication of information and metabolites between mitochondria and related organelles, which is a crucial factor in triggering myocardial I/R damage. To address this research gap, this review described the role of crosstalk between mitochondria and the correlative organelles such as endoplasmic reticulum, lysosomal and nuclei involved in reperfusion injury of the heart. In summary, this review aims to provide a comprehensive understanding of the crosstalk between organelles in myocardial I/R injury, with the ultimate goal of facilitating the development of targeted therapies based on this knowledge.
Collapse
Affiliation(s)
- Hui Yao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
| | - Yuxin Xie
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Chaoquan Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
| | - Wanting Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, 28 Chang Sheng West Road, Hunan, 421001, China.
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Du J, Wu X, Ni L. The roles of G protein-coupled receptor kinase 2 in renal diseases. J Cell Mol Med 2024; 28:e70154. [PMID: 39438268 PMCID: PMC11495970 DOI: 10.1111/jcmm.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
G protein-coupled receptor (GPCR) kinase 2 (GRK2) is an integrative node in many signalling network cascades. An emerging study indicates that GRK2 can interact with GPCRs and non-GPCR substrates in both kinase-dependent and -independent modes. Alterations in the functional levels of GRK2 have been found in a variety of renal diseases, such as hypertension-related kidney injury, sepsis-associated acute kidney injury (S-AKI), cardiorenal syndrome (CRS), acute kidney injury (AKI), age-related kidney injury or hyperglycemia-related kidney injury. Abnormal GRK2 expression contribute to the development of renal diseases, making them promising molecular targets for treating renal diseases. Blocking the prostaglandin E2 (PGE2)-EP1-Gaq-Ca2+ signal pathway in glomerular mesangial cells (GMCs) by internalizing prostaglandin E2 receptor 1 (EP1) with GRK2 may be a potential treatment for diabetic nephropathy (DN). In addition, GRK2 inhibition may have therapeutic effects in a variety of renal diseases, such as SLE-related kidney injury, DN, age-related kidney injury, hypertension-related kidney injury, and CRS. However, there is still a long way to go for the large-scale application of GRK2 inhibition in the field of renal diseases. In this review, we discuss recent updates in understanding the role of GRK2 in kidney dysfunction. Furthermore, we explore the potential of GRK2 as a possible therapeutic target for renal pathologies. We believe it will shed light on the future development of small-molecule inhibitors of GRK, as well as the clinical applications in renal diseases.
Collapse
Affiliation(s)
- Jiayin Du
- Department of NephrologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Xiaoyan Wu
- Department of NephrologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
- Department of General PracticeZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| | - Lihua Ni
- Department of NephrologyZhongnan Hospital of Wuhan UniversityWuhanHubeiChina
| |
Collapse
|
5
|
Chen W, Liu L, Tang M, Li J, Yuan W, Yin D, Cao Y, Tian J. Type I collagen-targeted liposome delivery of Serca2a modulates myocardium calcium homeostasis and reduces cardiac fibrosis induced by myocardial infarction. Mater Today Bio 2024; 28:101162. [PMID: 39175654 PMCID: PMC11339061 DOI: 10.1016/j.mtbio.2024.101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024] Open
Abstract
Fibrotic scarring and impaired myocardial calcium homeostasis serve as the two main factors in the pathology of heart failure following myocardial infarction (MI), leading to poor prognosis and death in patients. Serca2a is a target of interest in gene therapy for MI-induced heart failure via the regulation of intracellular calcium homeostasis and, subsequently, enhancing myocardial contractility. A recent study also reported that Serca2a ameliorates pulmonary fibrosis by blocking nuclear factor kB (NF-kB)/interleukin-6 (IL-6)-induced (SMAD)/TGF-β signaling activation, while the effect in MI-induced myocardial fibrosis remains to be addressed. Here, we loaded Serca2a plasmids into type 1 collagen-targeting nanoparticles to synthesize the GKWHCTTKFPHHYCLY-Serca2a-Liposome (GSL-NPs) for targeted treatment of myocardial infarction. We showed that GSL-NPs were effectively targeted in the scar area in MI-induced mice within tail-vein delivery for 48 h. Treatment with GSL-NPs improved cardiac functions and shrank fibrotic scars after MI in mice by up-regulating Serca2a. In cardiac fibroblasts, GSL-NPs alleviated hypoxia-induced fibrotic progression partly by inhibiting NF-kB activation. Furthermore, treatment with GSL-NPs protected cardiomyocyte calcium homeostasis and enhanced myocardial contractility during hypoxia. Together, we demonstrate that type I collagen-targeted liposome delivery of Serca2a may benefit patients with myocardial infarction by inhibiting fibrotic scarring as well as modulation of calcium homeostasis.
Collapse
Affiliation(s)
- Wanshi Chen
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Paediatrics, National Clinical Key Cardiovascular Specialty, Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Ultrasound Department of Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lingjuan Liu
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Paediatrics, National Clinical Key Cardiovascular Specialty, Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Tang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajin Li
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Paediatrics, National Clinical Key Cardiovascular Specialty, Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Yuan
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Paediatrics, National Clinical Key Cardiovascular Specialty, Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Yin
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Paediatrics, National Clinical Key Cardiovascular Specialty, Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Children's Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Ultrasound Department of Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Ultrasound Department of Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jie Tian
- Department of Cardiology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Paediatrics, National Clinical Key Cardiovascular Specialty, Key Laboratory of Children's Important Organ Development and Diseases of Chongqing Municipal Health Commission, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Zhang F, Armando I, Jose PA, Zeng C, Yang J. G protein-coupled receptor kinases in hypertension: physiology, pathogenesis, and therapeutic targets. Hypertens Res 2024; 47:2317-2336. [PMID: 38961282 PMCID: PMC11374685 DOI: 10.1038/s41440-024-01763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
G protein-coupled receptors (GPCRs) mediate cellular responses to a myriad of hormones and neurotransmitters that play vital roles in the regulation of physiological processes such as blood pressure. In organs such as the artery and kidney, hormones or neurotransmitters, such as angiotensin II (Ang II), dopamine, epinephrine, and norepinephrine exert their functions via their receptors, with the ultimate effect of keeping normal vascular reactivity, normal body sodium, and normal blood pressure. GPCR kinases (GRKs) exert their biological functions, by mediating the regulation of agonist-occupied GPCRs, non-GPCRs, or non-receptor substrates. In particular, increasing number of studies show that aberrant expression and activity of GRKs in the cardiovascular system and kidney inhibit or stimulate GPCRs (e.g., dopamine receptors, Ang II receptors, and α- and β-adrenergic receptors), resulting in hypertension. Current studies focus on the effect of selective GRK inhibitors in cardiovascular diseases, including hypertension. Moreover, genetic studies show that GRK gene variants are associated with essential hypertension, blood pressure response to antihypertensive medicines, and adverse cardiovascular outcomes of antihypertensive treatment. In this review, we present a comprehensive overview of GRK-mediated regulation of blood pressure, role of GRKs in the pathogenesis of hypertension, and highlight potential strategies for the treatment of hypertension. Schematic representation of GPCR desensitization process. Activation of GPCRs begins with the binding of an agonist to its corresponding receptor. Then G proteins activate downstream effectors that are mediated by various signaling pathways. GPCR signaling is halted by GRK-mediated receptor phosphorylation, which causes receptor internalization through β-arrestin.
Collapse
Affiliation(s)
- Fuwei Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ines Armando
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
7
|
Xiang H, Li Z, Li Y, Zheng J, Dou M, Xue W, Wu X. Dual-specificity phosphatase 26 protects against kidney injury caused by ischaemia-reperfusion through restraint of TAK1-JNK/p38-mediated apoptosis and inflammation of renal tubular epithelial cells. Toxicol Appl Pharmacol 2024; 487:116954. [PMID: 38705402 DOI: 10.1016/j.taap.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Dual-specificity phosphatase 26 (DUSP26) acts as a pivotal player in the transduction of signalling cascades with its dephosphorylating activity. Currently, DUSP26 attracts extensive attention due to its particular function in several pathological conditions. However, whether DUSP26 plays a role in kidney ischaemia-reperfusion (IR) injury is unknown. Aims of the current work were to explore the relevance of DUSP26 in kidney IR damage. DUSP26 levels were found to be decreased in renal tubular epithelial cells following hypoxia-reoxygenation (HR) and kidney samples subjected to IR treatments. DUSP26-overexpressed renal tubular epithelial cells exhibited protection against HR-caused apoptosis and inflammation, while DUSP26-depleted renal tubular epithelial cells were more sensitive to HR damage. Upregulation of DUSP26 in rat kidneys by infecting adenovirus expressing DUSP26 markedly ameliorated kidney injury caused by IR, while also effectively reducing apoptosis and inflammation. The mechanistic studies showed that the activation of transforming growth factor-β-activated kinase 1 (TAK1)-JNK/p38 MAPK, contributing to kidney injury under HR or IR conditions, was restrained by increasing DUSP26 expression. Pharmacological restraint of TAK1 markedly diminished DUSP26-depletion-exacebated effects on JNK/p38 activation and HR injury of renal tubular cells. The work reported a renal-protective function of DUSP26, which protects against IR-related kidney damage via the intervention effects on the TAK1-JNK/p38 axis. The findings laid a foundation for understanding the molecular pathogenesis of kidney IR injury and provide a prospective target for treating this condition.
Collapse
Affiliation(s)
- Heli Xiang
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 71006, China
| | - Zepeng Li
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 71006, China
| | - Yang Li
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 71006, China
| | - Jin Zheng
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 71006, China
| | - Meng Dou
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 71006, China
| | - Wujun Xue
- Department of Kidney Transplant, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 71006, China
| | - Xiaoyan Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
8
|
Gao Y, Lu X, Zhang G, Liu C, Sun S, Mao W, Jiang G, Zhou Y, Zhang N, Tao S, Chen M, Chen S, Zhang L. DRD4 alleviates acute kidney injury by suppressing ISG15/NOX4 axis-associated oxidative stress. Redox Biol 2024; 70:103078. [PMID: 38354631 PMCID: PMC10876914 DOI: 10.1016/j.redox.2024.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Acute kidney injury (AKI) is a life-threatening health condition associated with increasing morbidity and mortality. Despite extensive research on the mechanisms underlying AKI, effective clinical tools for prediction and treatment remain scarce. Oxidative stress and mitochondrial damage play a critical role in AKI and dopamine D4 receptor (DRD4) has been confirmed to be associated with oxidative stress. In this study, we hypothesized that DRD4 could attenuate AKI through its antioxidative and antiapoptotic effects. In vivo, DRD4 was remarkably decreased in the kidneys of mice subjected to ischemia/reperfusion injury (IRI) or cisplatin treatment. Notably, DRD4 significantly attenuated nephrotoxicity by suppressing oxidative stress and enhancing mitochondrial bioenergetics through the downregulation of reactive oxygen species (ROS) generation and NADPH oxidase 4 (NOX4) expression. In vitro, DRD4 demonstrated the ability to ameliorate oxidative stress-induced apoptosis in HK-2 cells subjected to hypoxia/reoxygenation- or cisplatin treatment. Transcriptome sequencing revealed that, mechanistically, DRD4 reduced the expression of its downstream target, interferon-stimulated gene 15 (ISG15), suppressing NOX4 ISGylation, enhancing the ubiquitination of NOX4, leading to its degradation, and ultimately counteracting oxidative stress-induced AKI. Altogether, these findings underscore the significance of DRD4 in AKI and elucidate DRD4 as a potential protectant against IRI or cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Yue Gao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Xun Lu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Guangyuan Zhang
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Chunhui Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Si Sun
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Weipu Mao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Guiya Jiang
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Yu Zhou
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China
| | - Nieke Zhang
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Shuchun Tao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China
| | - Ming Chen
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| | - Shuqiu Chen
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| | - Lei Zhang
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, China; Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
| |
Collapse
|
9
|
Xiang H, Huang J, Song A, Liu F, Xiong J, Zhang C. GRK5 promoted renal fibrosis via HDAC5/Smad3 signaling pathway. FASEB J 2024; 38:e23422. [PMID: 38206179 DOI: 10.1096/fj.202301595rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Renal fibrosis is a common pathological feature of chronic kidney diseases (CKD), poses a significant burden in the aging population, and is a major cause of end-stage renal disease (ESRD). In this study, we investigated the role of G protein-coupled receptor kinases (GRKs) 5 in the pathogenesis of renal fibrosis. GRK5 is a serine/threonine kinase that regulates G protein-coupled receptor (GPCR) signaling. GRK5 has been shown to play a role in various diseases including cardiac disorders and cancer. However, the role of GRK5 in renal fibrosis remains largely unknown. Our finding revealed that GRK5 was significantly overexpressed in renal fibrosis. Specifically, GRK5 was transferred into the nucleus via its nuclear localization sequence to regulate histone deacetylases (HDAC) 5 expression under renal fibrosis. GRK5 acted as an upstream regulator of HDAC5/Smad3 signaling pathway. HDAC5 regulated and prevented the transcriptional activity of myocyte enhancer factor 2A (MEF2A) to repress the transcription of Smad7 which leading to the activation of Smad3. These findings first revealed that GRK5 may be a potential therapeutic target for the treatment of renal fibrosis. Inhibition of GRK5 activity may be a promising strategy to attenuate the progression of renal fibrosis.
Collapse
Affiliation(s)
- Huiling Xiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Chan CKW, Szeto CC, Lee LKC, Xiao Y, Yin B, Ding X, Lee TWY, Lau JYW, Choi CHJ. A sub-10-nm, folic acid-conjugated gold nanoparticle as self-therapeutic treatment of tubulointerstitial fibrosis. Proc Natl Acad Sci U S A 2023; 120:e2305662120. [PMID: 37812696 PMCID: PMC10589645 DOI: 10.1073/pnas.2305662120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/11/2023] [Indexed: 10/11/2023] Open
Abstract
Nanomedicines for treating chronic kidney disease (CKD) are on the horizon, yet their delivery to renal tubules where tubulointerstitial fibrosis occurs remains inefficient. We report a folic acid-conjugated gold nanoparticle that can transport into renal tubules and treat tubulointerstitial fibrosis in mice with unilateral ureteral obstruction. The 3-nm gold core allows for the dissection of bio-nano interactions in the fibrotic kidney, ensures the overall nanoparticle (~7 nm) to be small enough for glomerular filtration, and naturally inhibits the p38α mitogen-activated protein kinase in the absence of chemical or biological drugs. The folic acids support binding to selected tubule cells with overexpression of folate receptors and promote retention in the fibrotic kidney. Upon intravenous injection, this nanoparticle can selectively accumulate in the fibrotic kidney over the nonfibrotic contralateral kidney at ~3.6% of the injected dose. Delivery to the fibrotic kidney depends on nanoparticle size and disease stage. Notably, a single injection of this self-therapeutic nanoparticle reduces tissue degeneration, inhibits genes related to the extracellular matrix, and treats fibrosis more effectively than standard Captopril therapy. Our data underscore the importance of constructing CKD nanomedicines based on renal pathophysiology.
Collapse
Affiliation(s)
- Cecilia Ka Wing Chan
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Cheuk Chun Szeto
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Leo Kit Cheung Lee
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Yu Xiao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Bohan Yin
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Xiaofan Ding
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Thomas Wai Yip Lee
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - James Yun Wong Lau
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| |
Collapse
|
11
|
Li S, Zhang Y, Lu R, Lv X, Lei Q, Tang D, Dai Q, Deng Z, Liao X, Tu S, Yang H, Xie Y, Meng J, Yuan Q, Qin J, Pu J, Peng Z, Tao L. Peroxiredoxin 1 aggravates acute kidney injury by promoting inflammation through Mincle/Syk/NF-κB signaling. Kidney Int 2023:S0085-2538(23)00328-9. [PMID: 37164261 DOI: 10.1016/j.kint.2023.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/12/2023]
Abstract
Damage-associated molecular patterns (DAMPs) are a cause of acute kidney injury (AKI). Our knowledge of these DAMPs remains incomplete. Here, we report serum peroxiredoxin 1 (Prdx1) as a novel DAMP for AKI. Lipopolysaccharide (LPS) and kidney ischemia/reperfusion injury instigated AKI with concurrent increases in serum Prdx1 and reductions of Prdx1 expression in kidney tubular epithelial cells. Genetic knockout of Prdx1 or use of a Prdx1-neutralizing antibody protected mice from AKI and this protection was impaired by introduction of recombinant Prdx1 (rPrdx1). Mechanistically, lipopolysaccharide increased serum and kidney proinflammatory cytokines, macrophage infiltration, and the content of M1 macrophages. All these events were suppressed in Prdx1-/- mice and renewed upon introduction of rPrdx1. In primary peritoneal macrophages, rPrdx1 induced M1 polarization, activated macrophage-inducible C-type lectin (Mincle) signaling, and enhanced proinflammatory cytokine production. Prdx1 interacted with Mincle to initiate acute kidney inflammation. Of note, rPrdx1 upregulated Mincle and the spleen tyrosine kinase Syk system in the primary peritoneal macrophages, while knockdown of Mincle abolished the increase in activated Syk. Additionally, rPrdx1 treatment enhanced the downstream events of Syk, including transcription factor NF-κB signaling pathways. Furthermore, serum Prdx1 was found to be increased in patients with AKI; the increase of which was associated with kidney function decline and inflammatory biomarkers in patient serum. Thus, kidney-derived serum Prdx1 contributes to AKI at least in part by activating Mincle signaling and downstream pathways.
Collapse
Affiliation(s)
- Shenglan Li
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Yan Zhang
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Rong Lu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China; Health Management Center of Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xin Lv
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Qunjuan Lei
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Damu Tang
- Urological Cancer Center for Research and Innovation (UCCRI), St Joseph's Hospital, Hamilton, ON L8N 4A6, Canada
| | - Qin Dai
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Zhenghao Deng
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Sha Tu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Jie Meng
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China; Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Jiao Qin
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China; Department of Nephrology, Hengyang Medical College, Changsha Central Hospital of University of South China, Changsha, China
| | - Jiaxi Pu
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China.
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China; Hunan Key Laboratory of Organ Fibrosis, Changsha, China.
| |
Collapse
|