1
|
Cho JM, Kim M, Oh J, Koh JH, Cho S, Kim Y, Lee S, Kim K, Kim YC, Han SS, Joo KW, Kim YS, Lee H, Kim DK, Park S. Causal Effects From Kidney Function to Plasma Proteome: Integrated Observational and Mendelian Randomization Analysis With >50,000 UK Biobank Participants. Proteomics Clin Appl 2025; 19:e70002. [PMID: 40014632 DOI: 10.1002/prca.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
PURPOSE Chronic kidney disease (CKD) causes detrimental systemic effects, including inflammation or apoptosis, which lead to substantial morbidity and mortality. However, the causal effect of reduced kidney function on systemic proteomic signatures is incompletely understood. METHODS We performed an integrated Mendelian randomization (MR) and observational analyses to identify the causal association between kidney function and plasma protein levels, based on 1815 plasma protein profiles in 50,407 UK Biobank participants and the CKDGen Phase 4 genome-wide association study (GWAS) meta-analysis for the genetic instruments of eGFR. RESULTS The MR analysis revealed 383 plasma proteins causally associated with eGFR. Reduced kidney function was found to be causally associated with an increase in the plasma levels of 381 proteins, among which TNF and IGFBP4 were increased, while the level of two proteins, NPHS1 and SPOCK1, decreased. Apoptosis-related pathway was significantly enriched in the gene-set enrichment analysis. In network analysis, TNF was identified as a hub protein with multiple linkages to molecules included in the TNF-signaling pathways, involved in inflammation, fibrosis, and apoptosis. CONCLUSIONS In this proteo-genomic analysis, we identified 383 plasma proteins causally associated with eGFR, highlighting TNF-associated pathways as pathologically relevant processes in kidney disease progression, systemic inflammation, and organ fibrosis, warranting further investigation.
Collapse
Affiliation(s)
- Jeong Min Cho
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Chung-Ang University Gwangmyeong Hospital, Gyeonggi-do, South Korea
| | - Minsang Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jaeik Oh
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jung Hun Koh
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Semin Cho
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Chung-Ang University Gwangmyeong Hospital, Gyeonggi-do, South Korea
| | - Yaerim Kim
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, South Korea
| | - Soojin Lee
- Department of Internal Medicine, Uijeongbu Eulji University Medical Center, Seoul, South Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, South Korea
| | - Yong Chul Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Seok Han
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwon-Wook Joo
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yon Su Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Hajeong Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Ki Kim
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Sehoon Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
2
|
Byun JH, Lebeau PF, Trink J, Uppal N, Lanktree MB, Krepinsky JC, Austin RC. Endoplasmic reticulum stress as a driver and therapeutic target for kidney disease. Nat Rev Nephrol 2025; 21:299-313. [PMID: 39988577 DOI: 10.1038/s41581-025-00938-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
The endoplasmic reticulum (ER) has crucial roles in metabolically active cells, including protein translation, protein folding and quality control, lipid biosynthesis, and calcium homeostasis. Adverse metabolic conditions or pathogenic genetic variants that cause misfolding and accumulation of proteins within the ER of kidney cells initiate an injurious process known as ER stress that contributes to kidney disease and its cardiovascular complications. Initiation of ER stress activates the unfolded protein response (UPR), a cellular defence mechanism that functions to restore ER homeostasis. However, severe or chronic ER stress rewires the UPR to activate deleterious pathways that exacerbate inflammation, apoptosis and fibrosis, resulting in kidney injury. This insidious crosstalk between ER stress, UPR activation, oxidative stress and inflammation forms a vicious cycle that drives kidney disease and vascular damage. Furthermore, genetic variants that disrupt protein-folding mechanisms trigger ER stress, as evidenced in autosomal-dominant tubulointerstitial kidney disease and Fabry disease. Emerging therapeutic strategies that enhance protein-folding capacity and reduce the burden of ER stress have shown promising results in kidney diseases. Thus, integrating knowledge of how genetic variants cause protein misfolding and ER stress into clinical practice will enhance treatment strategies and potentially improve outcomes for various kidney diseases and their vascular complications.
Collapse
Affiliation(s)
- Jae Hyun Byun
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Paul F Lebeau
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Jackie Trink
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Nikhil Uppal
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Matthew B Lanktree
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Joan C Krepinsky
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, The Research Institute of St Joe's Hamilton and the Hamilton Centre for Kidney Research, McMaster University, Hamilton, Ontario, Canada.
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
de Azevedo MGP, Maia SR, de Moraes RS, Geraldes SS, García HDM, Melchert A, Takahira RK, Okamoto AS, Andreatti Filho RL, Guimarães-Okamoto PTC. Evaluation of intermittent hemodialysis therapy in the bypass mode in dogs with chronic kidney disease in uremic crisis. BMC Vet Res 2025; 21:286. [PMID: 40269838 PMCID: PMC12016138 DOI: 10.1186/s12917-025-04735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/02/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND This study aimed to assess the safety of intermittent hemodialysis via the bypass mode in dogs with chronic kidney disease during uremic crisis. RESULTS Fourteen dogs with chronic kidney disease in uremic crisis were selected. The dogs were allocated into two experimental groups: intermittent hemodialysis without bypass mode (IHD group without bypass) and intermittent hemodialysis with bypass mode (IHD group with bypass). Data were collected during the first dialysis session at 10 min pre-session (M0), 30 min (M1), 60 min (M2), 120 min (M3), 180 min (M4), and 240 min (M5) after the session began and 10 min post-session (M6). An increase in rectal temperature was observed at certain moments in both groups. The hemogram revealed a decrease in red blood cells, total protein, and platelets in both groups, whereas hemoglobin and hematocrit decreased at M6 only in the IHD group with bypass. Urea, creatinine, and phosphorus were reduced at M6 in both groups. An increase in blood pH, sodium bicarbonate, and excess base at M6 (10 min post-session) was observed in both groups. The IHD group with bypass exhibited a significantly lower body weight. No significant differences were observed in session time or final URR between the groups. CONCLUSIONS The results of this study support the hypothesis that IHD with the bypass mode is safe and effective in CKD dogs with uremic crisis. This approach minimizes complications such as dialysis disequilibrium syndrome (DDS) while not causing hemodynamic or laboratory impairments under the executed conditions.
Collapse
Affiliation(s)
- Maria Gabriela Picelli de Azevedo
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho", UNESP, Botucatu, São Paulo, Brazil
| | - Suellen Rodrigues Maia
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho", UNESP, Botucatu, São Paulo, Brazil.
| | - Reiner Silveira de Moraes
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho", UNESP, Botucatu, São Paulo, Brazil
| | - Silvano Salgueiro Geraldes
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho", UNESP, Botucatu, São Paulo, Brazil
| | | | - Alessandra Melchert
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho", UNESP, Botucatu, São Paulo, Brazil
| | - Regina Kiomi Takahira
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho", UNESP, Botucatu, São Paulo, Brazil
| | - Adriano Sakai Okamoto
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho", UNESP, Botucatu, São Paulo, Brazil
| | - Raphael Lucio Andreatti Filho
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho", UNESP, Botucatu, São Paulo, Brazil
| | - Priscylla Tatiana Chalfun Guimarães-Okamoto
- Department of Veterinary Clinics, School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho", UNESP, Botucatu, São Paulo, Brazil
| |
Collapse
|
4
|
Liu J, Zeng D, Wang Y, Deng F, Wu S, Deng Z. Identification of druggable targets in acute kidney injury by proteome- and transcriptome-wide Mendelian randomization and bioinformatics analysis. Biol Direct 2025; 20:38. [PMID: 40148878 PMCID: PMC11951703 DOI: 10.1186/s13062-025-00631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Acute kidney injury (AKI) remains a critical condition with limited therapeutic options, predominantly managed by renal replacement therapy. The challenge of developing targeted treatments persists. METHODS We integrated genetic data related to druggable proteins and gene expression with AKI genome-wide association study (GWAS) findings. Based on multi-omics Mendelian randomization (MR), we identified the potential causal influence of 5,883 unique proteins and genes on AKI. We also performed using reverse MR and external cohort-based analysis to verify the robustness of this causal relationship. Expression patterns of these targets were examined using bulk transcriptome and single-cell transcriptome data. In addition, drug repurposing analyses were conducted to explore the potential of existing medications. We also constructed a molecular interaction network to explore the interplay between identified targets and known drugs. RESULTS Genetically predicted levels of seven proteins and twelve genes were associated with an increased risk of AKI. Of these, six targets (NCF1, TNFRSF1B, APEH, ACADSB, ADD1, and FAM3B) were prioritized based on robust evidence and validated in independent cohorts. Reverse MR showed a one-way causal relationship of targets. These targets are predominantly expressed in proximal tubular cells, endothelial cells, collecting duct-principal cells, and immune cells within both AKI-affected and normal tissues. Several promising drug repurposing opportunities were identified, such as telmisartan-NCF1, calcitriol-ACADSB, and ethinyl estradiol-ACADSB. The molecular interaction mapping and pathway integration analysis provided further insights, suggesting potential strategies for combinatorial therapies. CONCLUSIONS This extensive investigation identified several promising therapeutic targets for AKI and highlighted opportunities for drug repurposing. These findings offer valuable insights that could shape future research and the development of targeted treatments.
Collapse
Affiliation(s)
- Jiachen Liu
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dianjie Zeng
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China.
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital at Central South University, Changsha, 410011, Hunan, China.
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Jiang Q, Su X, Liao W, He Z, Wang Y, Jiang R, Dong C, Yang S. Exploring susceptibility and therapeutic targets for kidney stones through proteome-wide Mendelian randomization. Hum Mol Genet 2025; 34:47-63. [PMID: 39530187 DOI: 10.1093/hmg/ddae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Given the high recurrence rate of kidney stones, surgical lithotripsy and stone removal are not the ultimate treatments for kidney stones. There's an urgent need to explore the genetic mechanisms behind the susceptibility to kidney stones and to identify potential targets for prevention, to reduce the renal damage caused by recurrent stone formation. In this study, we screened 4548 circulating proteins using proteome-wide Mendelian Randomization (MR) to find proteins with a causal relationship to kidney stone risk. Additionally, proteome-wide association study (PWAS) and colocalization analysis were used to validate and prioritize candidate proteins. Moreover, downstream analyses including single-cell analysis, enrichment analysis, protein-protein interaction (PPI), and druggability analysis were conducted on the proteins causally related to kidney stones, to further explore the genetic mechanisms of susceptibility and the potential of proteins as drug targets. Ultimately, 22 target proteins associated with the risk of kidney stones were identified. Six plasma proteins (COLGALT1, CLMP, LECT1, ITIH1, CDHR3, CPLX2) were negatively correlated with kidney stone risk, while the genetic overexpression of 16 target proteins (GJA1, STOM, IRF9, F9, TMPRSS11D, ADH1B, SPINK13, CRYBB2, TNS2, DOCK9, OXSM, MST1, IL2, LMAN2, ITIH3, KLRF1) increased the risk of kidney stones. Based on the PWAS and colocalization analysis results, the 22 target proteins were classified into 3 tiers: IL2, CPLX2, and LMAN2 as tier 1 proteins with the most compelling evidence, MST1, ITIH1, and ITIH3 as tier 2 proteins, and the rest as tier 3 proteins. Enrichment analysis and PPI showed that target proteins mainly affect the occurrence of kidney stones through leukocyte activation and cell junction assembly. Druggability analysis suggested that IL2, MST1, and ITIH1 have potential as drug targets, and potential drugs were evaluated through molecular docking. In summary, this study employed multiple analytical methods to screen plasma proteins related to susceptibility to kidney stones, providing new insights into the genetic mechanisms of kidney stones and potential targets for treatment and prevention.
Collapse
Affiliation(s)
- Qinhong Jiang
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Xiaozhe Su
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Wenbiao Liao
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Ziqi He
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Yunhan Wang
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Rong Jiang
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Caitao Dong
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| | - Sixing Yang
- Department of Urology, Renmin Hospital of Wuhan University, No. 099, Zhang zhidong Road, Wuhan, Hubei Province 430060, People's Republic of China
| |
Collapse
|
6
|
Deng YT, You J, He Y, Zhang Y, Li HY, Wu XR, Cheng JY, Guo Y, Long ZW, Chen YL, Li ZY, Yang L, Zhang YR, Chen SD, Ge YJ, Huang YY, Shi LM, Dong Q, Mao Y, Feng JF, Cheng W, Yu JT. Atlas of the plasma proteome in health and disease in 53,026 adults. Cell 2025; 188:253-271.e7. [PMID: 39579765 DOI: 10.1016/j.cell.2024.10.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/17/2024] [Accepted: 10/24/2024] [Indexed: 11/25/2024]
Abstract
Large-scale proteomics studies can refine our understanding of health and disease and enable precision medicine. Here, we provide a detailed atlas of 2,920 plasma proteins linking to diseases (406 prevalent and 660 incident) and 986 health-related traits in 53,026 individuals (median follow-up: 14.8 years) from the UK Biobank, representing the most comprehensive proteome profiles to date. This atlas revealed 168,100 protein-disease associations and 554,488 protein-trait associations. Over 650 proteins were shared among at least 50 diseases, and over 1,000 showed sex and age heterogeneity. Furthermore, proteins demonstrated promising potential in disease discrimination (area under the curve [AUC] > 0.80 in 183 diseases). Finally, integrating protein quantitative trait locus data determined 474 causal proteins, providing 37 drug-repurposing opportunities and 26 promising targets with favorable safety profiles. These results provide an open-access comprehensive proteome-phenome resource (https://proteome-phenome-atlas.com/) to help elucidate the biological mechanisms of diseases and accelerate the development of disease biomarkers, prediction models, and therapeutic targets.
Collapse
Affiliation(s)
- Yue-Ting Deng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jia You
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Yu He
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hai-Yun Li
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xin-Rui Wu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ji-Yun Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Guo
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zi-Wen Long
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Lin Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ze-Yu Li
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Liu Yang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Ru Zhang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shi-Dong Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu-Yuan Huang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Le-Ming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital Fudan University, Shanghai, China.
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China; Department of Computer Science, University of Warwick, Coventry, UK.
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Lanktree MB, Robinson-Cohen C. Ancestral Variability in the Genetic Architecture of Urine Uromodulin. Kidney Int Rep 2025; 10:10-11. [PMID: 39810791 PMCID: PMC11725962 DOI: 10.1016/j.ekir.2024.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Affiliation(s)
- Matthew B. Lanktree
- Departments of Medicine and Health Research Methodology, Evidence & Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
- Division of Nephrology, St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
| | | |
Collapse
|
8
|
Roushani J, Berube AJ, Lanktree MB. Reporting of Race, Ethnicity, and Ancestry Remains Inadequate in Kidney Research. Kidney Int Rep 2024; 9:3328-3331. [PMID: 39534202 PMCID: PMC11551123 DOI: 10.1016/j.ekir.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Jian Roushani
- Department of Medicine; McMaster University, Hamilton, Ontario, Canada
| | | | - Matthew B. Lanktree
- Department of Medicine; McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact; McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
- Division of Nephrology, St. Joseph’s Healthcare Hamilton, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Clara TSH, Huili Z, Jian-Jun L, Liu S, Janus LWL, Xiang KK, Gurung RL, Yiamunaa M, Keven AKL, Yi-Ming S, Subramaniam T, Fang SC, Chi LS. Association of major candidate protein biomarkers and long-term diabetic kidney disease progression among Asians with young-onset type 2 diabetes mellitus. Diabetes Res Clin Pract 2024; 216:111821. [PMID: 39142520 DOI: 10.1016/j.diabres.2024.111821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024]
Abstract
AIMS We aim to determine the association of seven major candidate protein biomarkers and diabetic kidney disease (DKD) progression among Asians with young-onset type 2 diabetes mellitus (T2DM). METHODS 824 T2DM patients (onset ≤ 40 years old) were classified as DKD progressors based on yearly estimated glomerular filtration rate (eGFR) decline of >3 ml/min/1.73 m2 or >40 % from baseline. Plasma leucine-rich α-2-glycoprotein 1 (pLRG1), tumor necrosis factor-receptor 1 (pTNF-R1), pigment epithelium-derived factor (pPEDF), urinary α-1-microglobulin (uA1M), kidney injury molecular 1 (uKIM-1), haptoglobin (uHP) and uromodulin (uUMOD) were measured using enzyme-linked immunoassays. RESULTS Over 5.7 years of follow-up, 25.2 % of patients were DKD progressors. Elevated levels of pLRG1, pTNF-R1, pPEDF, uA1M, uKIM-1 and uHP were associated with DKD progression. The association between pTNF-R1 levels and DKD progression persisted after adjusting for clinical covariates (OR 1.84, 95 %CI 1.44-2.34, p < 0.001). The effects of pTNF-R1 were partially mediated through hyperglycemia (8 %) and albuminuria (10 %). Inclusion of pTNF-R1 in a clinical variable-based model improved the area under the receiver operating characteristics curve for predicting DKD progression by 0.02, from 0.72 (95 %CI 0.68-0.76) to 0.74 (95 %CI 0.70-0.78), p = 0.099. CONCLUSIONS Among seven major candidate proteins, pTNF-R1, partially mediated through hyperglycemia and albuminuria, robustly predicted DKD progression among Asians with young-onset T2DM.
Collapse
Affiliation(s)
| | - Zheng Huili
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Liu Jian-Jun
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Sylvia Liu
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Kee Kai Xiang
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Resham Lal Gurung
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - M Yiamunaa
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | | | - Shao Yi-Ming
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore
| | - Tavintharan Subramaniam
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore; Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Sum Chee Fang
- Diabetes Centre, Admiralty Medical Centre, Singapore
| | - Lim Su Chi
- Clinical Research Unit, Khoo Teck Puat Hospital, Singapore; Diabetes Centre, Admiralty Medical Centre, Singapore; Saw Swee Hock School of Public Heath, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
| |
Collapse
|
10
|
Siew ED, Hellwege JN, Hung AM, Birkelo BC, Vincz AJ, Parr SK, Denton J, Greevy RA, Robinson-Cohen C, Liu H, Susztak K, Matheny ME, Velez Edwards DR. Genome-wide association study of hospitalized patients and acute kidney injury. Kidney Int 2024; 106:291-301. [PMID: 38797326 PMCID: PMC11260539 DOI: 10.1016/j.kint.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 05/29/2024]
Abstract
Acute kidney injury (AKI) is a common and devastating complication of hospitalization. Here, we identified genetic loci associated with AKI in patients hospitalized between 2002-2019 in the Million Veteran Program and data from Vanderbilt University Medical Center's BioVU. AKI was defined as meeting a modified KDIGO Stage 1 or more for two or more consecutive days or kidney replacement therapy. Control individuals were required to have one or more qualifying hospitalizations without AKI and no evidence of AKI during any other observed hospitalizations. Genome-wide association studies (GWAS), stratified by race, adjusting for sex, age, baseline estimated glomerular filtration rate (eGFR), and the top ten principal components of ancestry were conducted. Results were meta-analyzed using fixed effects models. In total, there were 54,488 patients with AKI and 138,051 non-AKI individuals included in the study. Two novel loci reached genome-wide significance in the meta-analysis: rs11642015 near the FTO locus on chromosome 16 (obesity traits) (odds ratio 1.07 (95% confidence interval, 1.05-1.09)) and rs4859682 near the SHROOM3 locus on chromosome 4 (glomerular filtration barrier integrity) (odds ratio 0.95 (95% confidence interval, 0.93-0.96)). These loci colocalized with previous studies of kidney function, and genetic correlation indicated significant shared genetic architecture between AKI and eGFR. Notably, the association at the FTO locus was attenuated after adjustment for BMI and diabetes, suggesting that this association may be partially driven by obesity. Both FTO and the SHROOM3 loci showed nominal evidence of replication from diagnostic-code-based summary statistics from UK Biobank, FinnGen, and Biobank Japan. Thus, our large GWA meta-analysis found two loci significantly associated with AKI suggesting genetics may explain some risk for AKI.
Collapse
Affiliation(s)
- Edward D Siew
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA.
| | - Jacklyn N Hellwege
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Adriana M Hung
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Bethany C Birkelo
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Andrew J Vincz
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Sharidan K Parr
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Jason Denton
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA
| | - Robert A Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Cassianne Robinson-Cohen
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Vanderbilt Center for Kidney Disease (VCKD) and Integrated Program for AKI Research (VIP-AKI), Nashville, Tennessee, USA
| | - Hongbo Liu
- Division of Renal Electrolyte and Hypertension, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA; Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Katalin Susztak
- Division of Renal Electrolyte and Hypertension, Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA; Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, USA
| | - Michael E Matheny
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Digna R Velez Edwards
- Tennessee Valley Health Systems, Nashville Veterans Affairs, Nashville, Tennessee, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Si S, Liu H, Xu L, Zhan S. Identification of novel therapeutic targets for chronic kidney disease and kidney function by integrating multi-omics proteome with transcriptome. Genome Med 2024; 16:84. [PMID: 38898508 PMCID: PMC11186236 DOI: 10.1186/s13073-024-01356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a progressive disease for which there is no effective cure. We aimed to identify potential drug targets for CKD and kidney function by integrating plasma proteome and transcriptome. METHODS We designed a comprehensive analysis pipeline involving two-sample Mendelian randomization (MR) (for proteins), summary-based MR (SMR) (for mRNA), and colocalization (for coding genes) to identify potential multi-omics biomarkers for CKD and combined the protein-protein interaction, Gene Ontology (GO), and single-cell annotation to explore the potential biological roles. The outcomes included CKD, extensive kidney function phenotypes, and different CKD clinical types (IgA nephropathy, chronic glomerulonephritis, chronic tubulointerstitial nephritis, membranous nephropathy, nephrotic syndrome, and diabetic nephropathy). RESULTS Leveraging pQTLs of 3032 proteins from 3 large-scale GWASs and corresponding blood- and tissue-specific eQTLs, we identified 32 proteins associated with CKD, which were validated across diverse CKD datasets, kidney function indicators, and clinical types. Notably, 12 proteins with prior MR support, including fibroblast growth factor 5 (FGF5), isopentenyl-diphosphate delta-isomerase 2 (IDI2), inhibin beta C chain (INHBC), butyrophilin subfamily 3 member A2 (BTN3A2), BTN3A3, uromodulin (UMOD), complement component 4A (C4a), C4b, centrosomal protein of 170 kDa (CEP170), serologically defined colon cancer antigen 8 (SDCCAG8), MHC class I polypeptide-related sequence B (MICB), and liver-expressed antimicrobial peptide 2 (LEAP2), were confirmed. To our knowledge, 20 novel causal proteins have not been previously reported. Five novel proteins, namely, GCKR (OR 1.17, 95% CI 1.10-1.24), IGFBP-5 (OR 0.43, 95% CI 0.29-0.62), sRAGE (OR 1.14, 95% CI 1.07-1.22), GNPTG (OR 0.90, 95% CI 0.86-0.95), and YOD1 (OR 1.39, 95% CI 1.18-1.64,) passed the MR, SMR, and colocalization analysis. The other 15 proteins were also candidate targets (GATM, AIF1L, DQA2, PFKFB2, NFATC1, activin AC, Apo A-IV, MFAP4, DJC10, C2CD2L, TCEA2, HLA-E, PLD3, AIF1, and GMPR1). These proteins interact with each other, and their coding genes were mainly enrichment in immunity-related pathways or presented specificity across tissues, kidney-related tissue cells, and kidney single cells. CONCLUSIONS Our integrated analysis of plasma proteome and transcriptome data identifies 32 potential therapeutic targets for CKD, kidney function, and specific CKD clinical types, offering potential targets for the development of novel immunotherapies, combination therapies, or targeted interventions.
Collapse
Affiliation(s)
- Shucheng Si
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Hongyan Liu
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Lu Xu
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China
- Peking University Health Science Center, Beijing, 100191, China
| | - Siyan Zhan
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Health Science Center, Beijing, 100191, China.
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191, China.
- Institute for Artificial Intelligence, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Lu YQ, Wang Y. Multi-Omic Analysis Reveals Genetic Determinants and Therapeutic Targets of Chronic Kidney Disease and Kidney Function. Int J Mol Sci 2024; 25:6033. [PMID: 38892221 PMCID: PMC11172763 DOI: 10.3390/ijms25116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic kidney disease (CKD) presents a significant global health challenge, characterized by complex pathophysiology. This study utilized a multi-omic approach, integrating genomic data from the CKDGen consortium alongside transcriptomic, metabolomic, and proteomic data to elucidate the genetic underpinnings and identify therapeutic targets for CKD and kidney function. We employed a range of analytical methods including cross-tissue transcriptome-wide association studies (TWASs), Mendelian randomization (MR), summary-based MR (SMR), and molecular docking. These analyses collectively identified 146 cross-tissue genetic associations with CKD and kidney function. Key Golgi apparatus-related genes (GARGs) and 41 potential drug targets were highlighted, with MAP3K11 emerging as a significant gene from the TWAS and MR data, underscoring its potential as a therapeutic target. Capsaicin displayed promising drug-target interactions in molecular docking analyses. Additionally, metabolome- and proteome-wide MR (PWMR) analyses revealed 33 unique metabolites and critical inflammatory proteins such as FGF5 that are significantly linked to and colocalized with CKD and kidney function. These insights deepen our understanding of CKD pathogenesis and highlight novel targets for treatment and prevention.
Collapse
Affiliation(s)
| | - Yirong Wang
- School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, China;
| |
Collapse
|
13
|
Lanktree MB, Collister D, Pigyere M, Mazzetti A, Paré G, Walsh M. Proteome-Wide Changes in Blood Biomarkers During Hemodialysis. Kidney Int Rep 2024; 9:177-181. [PMID: 38312796 PMCID: PMC10831367 DOI: 10.1016/j.ekir.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 02/06/2024] Open
Affiliation(s)
- Matthew B. Lanktree
- Population Health Research Institute, Hamilton, Ontario, Canada
- Division of Nephrology, Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - David Collister
- Division of Nephrology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marie Pigyere
- Population Health Research Institute, Hamilton, Ontario, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Andrea Mazzetti
- Population Health Research Institute, Hamilton, Ontario, Canada
- Division of Nephrology, Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Population Health Research Institute, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Michael Walsh
- Population Health Research Institute, Hamilton, Ontario, Canada
- Division of Nephrology, Department of Medicine, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
14
|
Schlosser P. Advancing proteomics in nephrology: unraveling causal pathways and therapeutic targets. Kidney Int 2023; 104:1059-1061. [PMID: 37981427 DOI: 10.1016/j.kint.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/03/2023] [Indexed: 11/21/2023]
Abstract
Proteomics has illuminated disease pathophysiology, unearthed novel biomarkers, and bolstered risk assessment strategies. In nephrology, observational analyses unveil biomarkers associated with adverse outcomes, whereas genetics offer insights into causal pathways. Mendelian randomization offers the potential to link the two, uncovering causal relationships between biomarkers and kidney function. Lanktree et al. demonstrate Mendelian randomization's utility in identifying additional proteins affecting kidney function and kidney disease progression.
Collapse
Affiliation(s)
- Pascal Schlosser
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA; Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.
| |
Collapse
|