1
|
Matsuda C, Ishii K, Nakagawa Y, Shirai T, Sasaki T, Hirokawa YS, Iguchi K, Watanabe M. Fibroblast-derived exosomal microRNA regulates NKX3-1 expression in androgen-sensitive, androgen receptor-dependent prostate cancer cells. J Cell Biochem 2023; 124:1135-1144. [PMID: 37334663 DOI: 10.1002/jcb.30435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Androgen deprivation therapy (ADT) targeting androgen production and androgen receptor (AR) signaling is the primary antihormonal therapy in the treatment of advanced prostate cancer (PCa). However, no clinically established molecular biomarkers have been identified to predict the effectiveness of ADT before starting ADT. The tumor microenvironment of PCa contains fibroblasts that regulate PCa progression by producing multiple soluble factors. We have previously reported that AR-activating factor-secreted fibroblasts increase the responsiveness of androgen-sensitive, AR-dependent PCa cells to ADT. Thus, we hypothesized that fibroblast-derived soluble factors may affect cancer cell differentiation by regulating cancer-related gene expression in PCa cells and that the biochemical characteristics of fibroblasts may be used to predict the effectiveness of ADT. Here, we investigated the effects of normal fibroblasts (PrSC cells) and three PCa patient-derived fibroblast lines (pcPrF-M5, -M28, and -M31 cells) on the expression of cancer-related genes in androgen-sensitive, AR-dependent human PCa cells (LNCaP cells) and three sublines showing different androgen sensitivities and AR dependencies. The mRNA expression of the tumor suppressor gene NKX3-1 in LNCaP cells and E9 cells (which show low androgen sensitivity and AR dependency) was significantly increased by treatment with conditioned media from PrSC and pcPrF-M5 cells but not from pcPrF-M28 and pcPrF-M31 cells. Notably, no upregulation of NKX3-1 was observed in F10 cells (AR-V7-expressing, AR-independent cells with low androgen sensitivity) and AIDL cells (androgen-insensitive, AR-independent cells). Among 81 common fibroblast-derived exosomal microRNAs that showed 0.5-fold lower expression in pcPrF-M28 and pcPrF-M31 cells than in PrSC and pcPrF-M5 cells, miR-449c-3p and miR-3121-3p were found to target NKX3-1. In only LNCaP cells, the NKX3-1 mRNA expression was significantly increased by transfection of an miR-3121-3p mimic but not that of the miR-449c-3p mimic. Thus, fibroblast-derived exosomal miR-3121-3p may be involved in preventing the oncogenic dedifferentiation of PCa cells by targeting NKX3-1 in androgen-sensitive, AR-dependent PCa cells.
Collapse
Affiliation(s)
- Chise Matsuda
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kenichiro Ishii
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
- Department of Nursing, Nagoya University of Arts and Sciences, Aichi, Japan
| | - Yasuhisa Nakagawa
- Faculty of Medical Technology, Gifu University of Medical Science, Gifu, Japan
| | - Taku Shirai
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yoshifumi S Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kazuhiro Iguchi
- Laboratory of Community Pharmacy, Gifu Pharmaceutical University, Gifu, Japan
| | - Masatoshi Watanabe
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| |
Collapse
|
2
|
Blázquez-Encinas R, Moreno-Montilla MT, García-Vioque V, Gracia-Navarro F, Alors-Pérez E, Pedraza-Arevalo S, Ibáñez-Costa A, Castaño JP. The uprise of RNA biology in neuroendocrine neoplasms: altered splicing and RNA species unveil translational opportunities. Rev Endocr Metab Disord 2023; 24:267-282. [PMID: 36418657 PMCID: PMC9685014 DOI: 10.1007/s11154-022-09771-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
Neuroendocrine neoplasms (NENs) comprise a highly heterogeneous group of tumors arising from the diffuse neuroendocrine system. NENs mainly originate in gastrointestinal, pancreatic, and pulmonary tissues, and despite being rare, show rising incidence. The molecular mechanisms underlying NEN development are still poorly understood, although recent studies are unveiling their genomic, epigenomic and transcriptomic landscapes. RNA was originally considered as an intermediary between DNA and protein. Today, compelling evidence underscores the regulatory relevance of RNA processing, while new RNA molecules emerge with key functional roles in core cell processes. Indeed, correct functioning of the interrelated complementary processes comprising RNA biology, its processing, transport, and surveillance, is essential to ensure adequate cell homeostasis, and its misfunction is related to cancer at multiple levels. This review is focused on the dysregulation of RNA biology in NENs. In particular, we survey alterations in the splicing process and available information implicating the main RNA species and processes in NENs pathology, including their role as biomarkers, and their functionality and targetability. Understanding how NENs precisely (mis)behave requires a profound knowledge at every layer of their heterogeneity, to help improve NEN management. RNA biology provides a wide spectrum of previously unexplored processes and molecules that open new avenues for NEN detection, classification and treatment. The current molecular biology era is rapidly evolving to facilitate a detailed comprehension of cancer biology and is enabling the arrival of personalized, predictive and precision medicine to rare tumors like NENs.
Collapse
Affiliation(s)
- Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - María Trinidad Moreno-Montilla
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Francisco Gracia-Navarro
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
- Hospital Universitario Reina Sofía, Córdoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Córdoba, Spain.
| |
Collapse
|
3
|
Hsieh YH, Yu FJ, Nassef Y, Liu CJ, Chen YS, Lin CY, Feng JL, Wu MH. Targeting of Mcl-1 Expression by MiRNA-3614-5p Promotes Cell Apoptosis of Human Prostate Cancer Cells. Int J Mol Sci 2022; 23:ijms23084194. [PMID: 35457012 PMCID: PMC9029607 DOI: 10.3390/ijms23084194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/03/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNA (miRNA) acts as a critical regulator of growth in various human malignancies. However, the role of miRNA-3614 in the progression of human prostate cancer remains unknown. In this study, our results demonstrated that miRNA-3614-5p exerts a significant inhibitory effect on cell viability and colony formation and induces sub-G1 cell cycle arrest and apoptosis in human prostate cancer cells. Myeloid cell leukemia-1 (Mcl-1) acts as a master regulator of cell survival. Using the miRNA databases, miRNA-3614-5p was found to regulate Mcl-1 expression by targeting positions of the Mcl-1-3′ UTR. The reduction of Mcl-1 expression by miRNA-3614-5p was further confirmed using an immunoblotting assay. Pro-apoptotic caspase-3 and poly (ADP-ribose) polymerase (PARP) were significantly activated by miRNA-3614-5p to generate cleaved caspase-3 (active caspase-3) and cleaved PARP (active PARP), accompanied by the inhibited Mcl-1 expression. These findings were the first to demonstrate the anti-growth effects of miRNA-3614-5p through downregulating Mcl-1 expression in human prostate cancer cells.
Collapse
Affiliation(s)
- Yi-Hsien Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (Y.N.); (Y.-S.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Fang-Jung Yu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-J.Y.); (C.-J.L.)
- Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yasser Nassef
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (Y.N.); (Y.-S.C.)
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (F.-J.Y.); (C.-J.L.)
- Regenetative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yong-Syuan Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-H.H.); (Y.N.); (Y.-S.C.)
| | - Ching-Yi Lin
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Jia-Liang Feng
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung 40764, Taiwan
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Chunghua 515006, Taiwan
- Correspondence: (J.-L.F.); (M.-H.W.)
| | - Min-Hua Wu
- Laboratory Department, Chung-Kang Branch, Cheng-Ching General Hospital, Taichung 40764, Taiwan
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Chunghua 515006, Taiwan
- Correspondence: (J.-L.F.); (M.-H.W.)
| |
Collapse
|
4
|
Uzuner E, Ulu GT, Gürler SB, Baran Y. The Role of MiRNA in Cancer: Pathogenesis, Diagnosis, and Treatment. Methods Mol Biol 2022; 2257:375-422. [PMID: 34432288 DOI: 10.1007/978-1-0716-1170-8_18] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer is also determined by the alterations of oncogenes and tumor suppressor genes. These gene expressions can be regulated by microRNAs (miRNA). At this point, researchers focus on addressing two main questions: "How are oncogenes and/or tumor suppressor genes regulated by miRNAs?" and "Which other mechanisms in cancer cells are regulated by miRNAs?" In this work we focus on gathering the publications answering these questions. The expression of miRNAs is affected by amplification, deletion or mutation. These processes are controlled by oncogenes and tumor suppressor genes, which regulate different mechanisms of cancer initiation and progression including cell proliferation, cell growth, apoptosis, DNA repair, invasion, angiogenesis, metastasis, drug resistance, metabolic regulation, and immune response regulation in cancer cells. In addition, profiling of miRNA is an important step in developing a new therapeutic approach for cancer.
Collapse
Affiliation(s)
- Erez Uzuner
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Gizem Tugçe Ulu
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Sevim Beyza Gürler
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yusuf Baran
- Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
5
|
Weidle UH, Nopora A. MicroRNAs Involved in Small-cell Lung Cancer as Possible Agents for Treatment and Identification of New Targets. Cancer Genomics Proteomics 2021; 18:591-603. [PMID: 34479913 DOI: 10.21873/cgp.20283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
Small-cell lung cancer, a neuro-endocrine type of lung cancers, responds very well to chemotherapy-based agents. However, a high frequency of relapse due to adaptive resistance is observed. Immunotherapy-based treatments with checkpoint inhibitors has resulted in improvement of treatment but the responses are not as impressive as in other types of tumor. Therefore, identification of new targets and treatment modalities is an important issue. After searching the literature, we identified eight down-regulated microRNAs involved in radiation- and chemotherapy-induced resistance, as well as three up-regulated and four down-regulated miRNAs with impacts on proliferation, invasion and apoptosis of small-cell lung cancer cells in vitro. Furthermore, one up-regulated and four down-regulated microRNAs with in vivo activity in SCLC cell xenografts were identified. The identified microRNAs are candidates for inhibition or reconstitution therapy. The corresponding targets are candidates for inhibition or functional reconstitution with antibody-based moieties or small molecules.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
6
|
Pandey M, Mukhopadhyay A, Sharawat SK, Kumar S. Role of microRNAs in regulating cell proliferation, metastasis and chemoresistance and their applications as cancer biomarkers in small cell lung cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188552. [PMID: 33892053 DOI: 10.1016/j.bbcan.2021.188552] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/22/2022]
Abstract
Small cell lung cancer (SCLC), a smoking-related highly aggressive neuroendocrine cancer, is characterized by rapid cell proliferation, early metastatic dissemination, and early relapse due to chemoresistance to first-line platinum-doublet chemotherapy. Genomically, SCLC tumors show nearly universal loss of TP53 and RB1 tumor suppressor genes, while gene expression signature classifies them into 4 distinct subgroups based on the expression patterns of lineage transcription factors - ASCL1/ASH1, NEUROD1, YAP-1, and POU2F3. Due to the lack of targetable molecular alterations and clinically useful diagnostic, prognostic and predictive biomarker, there is insignificant progress in the therapeutic management of SCLC patients. Numerous studies have shown a significant involvement of non-coding RNAs in the regulation of cell proliferation, invasion and migration, apoptosis, metastasis, and chemoresistance in various human cancers. In this review, we comprehensively discuss the role of microRNAs (miRNAs) in regulating the aforementioned biological process in SCLC. For this, we searched the scientific literature and selected studies that have evaluated the role of miRNAs in the disease pathogenesis or as a cancer biomarker in SCLC. Our review suggests that several miRNAs are involved in the pathogenesis of SCLC mainly by regulating cell proliferation, metastasis, and chemoresistance. Few studies have also demonstrated the clinical utility of miRNAs in monitoring response to chemotherapy as well as in predicting survival outcomes. However, more in-depth mechanistic studies utilizing in vivo models and multicentric studies with larger patient cohorts are needed before the applications of miRNAs as therapeutic targets or as biomarkers are translated from the laboratory into clinics.
Collapse
Affiliation(s)
- Monu Pandey
- Dept. of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Abhirup Mukhopadhyay
- Dept. of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Surender K Sharawat
- Dept. of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sachin Kumar
- Dept. of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
7
|
Liu X, Zhang Y. Bioinformatics Analysis of Dysregulated MicroRNA-Messenger RNA Networks in Small Cell Lung Cancer. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The present study aimed to identify a key module of differentially expressed miRNAs (DE-miRNAs) together with the corresponding differentially expressed mRNAs (DE-mRNAs) within small cell lung cancer (SCLC). Linear models were applied to ascertain the DE-miRNAs and DE-mRNAs in SCLC
versus matched non-carcinoma samples obtained from the RNA expression datasets of GSE19945, GSE74190 and GSE6044. The common DE-miRNAs were identified using the Venn plot. Then, 3 databases were used to retrieve the DE-miRNAs target genes, and the intersection was taken for validating the
shared target genes. Besides, Cytoscape was utilized for constructing the miRNAmRNA network for SCLC. Finally, a key module of five DE-miRNAs and four hub genes was determined based on the degree. In addition, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses
were conducted for exploring those hub genes in terms of their functions along with the involved signal transduction pathways. Altogether 106 shared DE-miRNAs were identified, which were used to predict 63 common target genes. In addition, a key module of five DE-miRNAs (hsa-miR-17-5p, hsa-miR-20a-5p,
hsa-miR-20b-5p, hsa-miR-93-5p and hsa-miR- 106b-5p) and four hub genes (SOX4, DPYSL2, TGFBR2 and F3) were extracted from the miRNAmRNA network according to their degree. Finally, the hub genes were subjected to GO as well as KEGG analysis, which revealed that cell cycle G1/S phase transition,
the extracellular matrix, and cellular senescence signaling pathways exerted vial parts during SCLC progression. A key module of five DE-miRNAs and four hub genes may be potentially used as clinical biomarkers to predict SCLC.
Collapse
Affiliation(s)
- Xingsheng Liu
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yi Zhang
- Department of Thoracic Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| |
Collapse
|
8
|
Chen E, Li E, Liu H, Zhou Y, Wen L, Wang J, Wang Y, Ye L, Liang T. miR-26b enhances the sensitivity of hepatocellular carcinoma to Doxorubicin via USP9X-dependent degradation of p53 and regulation of autophagy. Int J Biol Sci 2021; 17:781-795. [PMID: 33767588 PMCID: PMC7975695 DOI: 10.7150/ijbs.52517] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/16/2021] [Indexed: 12/30/2022] Open
Abstract
Multi-drug resistance is a major challenge to hepatocellular carcinoma (HCC) treatment, and the over-expression or deletion of microRNA (miRNA) expression is closely related to the drug-resistant properties of various cell lines. However, the underlying molecular mechanisms remain unclear. CCK-8, EdU, flow cytometry, and transmission electron microscopy were performed to determine cell viability, proliferation, apoptosis, autophagic flow, and nanoparticle characterization, respectively. In this study, the results showed that the expression of miR-26b was downregulated following doxorubicin treatment in human HCC tissues. An miR-26b mimic enhanced HCC cell doxorubicin sensitivity, except in the absence of p53 in Hep3B cells. Delivery of the proteasome inhibitor, MG132, reversed the inhibitory effect of miR-26b on the level of p53 following doxorubicin treatment. Tenovin-1 (an MDM2 inhibitor) protected p53 from ubiquitination-mediated degradation only in HepG2 cells with wild type p53. Tenovin-1 pretreatment enhanced HCC cell resistance to doxorubicin when transfected with an miR-26b mimic. Moreover, the miR-26b mimic inhibited doxorubicin-induced autophagy and the autophagy inducer, rapamycin, eliminated the differences in the drug sensitivity effect of miR-26b. In vivo, treatment with sp94dr/miR-26b mimic nanoparticles plus doxorubicin inhibited tumor growth. Our current data indicate that miR-26b enhances HCC cell sensitivity to doxorubicin through diminishing USP9X-mediated p53 de-ubiquitination caused by DNA damaging drugs and autophagy regulation. This miRNA-mediated pathway that modulates HCC will help develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Enjiang Chen
- The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Enliang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Liu
- Department of Medical Oncology, Tongde hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Yue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liang Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianxin Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Department of Medical Oncology, Tongde hospital of Zhejiang Province, Hangzhou, Zhejiang, 310012, China
| | - Longyun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Innovation Center for the Study of Pancreatic Disease, Hangzhou, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, China
| |
Collapse
|
9
|
Yang ZH, Li J, Chen WZ, Kong FS. Oncogenic gene RGC-32 is a direct target of miR-26b and facilitates tongue squamous cell carcinoma aggressiveness through EMT and PI3K/AKT signalling. Cell Biochem Funct 2020; 38:943-954. [PMID: 32325539 DOI: 10.1002/cbf.3520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 11/12/2022]
Abstract
Growing data have recognized the significance of Response Gene to Complement (RGC)-32 in numerous tumour developments. Notwithstanding, the functional role and underlying mechanism of it in tongue squamous cell carcinoma (TSCC) remain enigmatic. Here, to identify the impact of RGC-32 in TSCC, its expression in multiple TSCC cells was measured and loss-of-function experiments in cell lines were performed to illuminate the function of it induced TSCC progression, via si-RNA knockdown, CCK-8, colony formation, wound-healing, transwell, flow cytometry and western blot assays. To clarify potential mechanism, expressions of hallmarks in epithelial-mesenchymal transition (EMT) process and PI3K/AKT signalling were assessed, and the upstream miR regulator of RGC-32 was predicted and verified by applying bioinformatic approaches and dual-luciferase reporter assay, respectively. Finally, the rescue experiments were applied to better elucidate the effect of miR-26b/RGC-32 axis in TSCC behaviours. As a result, RGC-32 was upregulated in TSCC cells and knocking down of it abrogated cell proliferation, trans-migration and invasion, whilst promoted apoptosis in TSCC, which was regulated through repressing EMT and inactivation of PI3K/AKT signalling. Subsequently, miR-26b was predicted and identified as an upstream regulator of RGC-32, and the pro-tumorigenic effect of RGC-32 was reversed by miR-26b overexpression. Collectively, our results demonstrated that RGC-32 facilitated TSCC progression, which was modulated by activations of PI3K/AKT pathway and EMT process, and reduction of its negative regulator of miR-26b. These findings highlight a novel role of miR-26b/RGC-32 axis in TSCC and underlying mechanism, encouraging a potent usage in TSCC treatment. SIGNIFICANCE OF THE STUDY: We first uncovered that Response Gene to Complement-32 played a significantly pro-tumorigenic role in tongue squamous cell carcinoma (TSCC), which was closely regulated by downregulation of miR-26b and activations of epithelial-mesenchymal transition process and PI3K/AKT signalling. These findings contribute to better understand the molecular mechanism in carcinogenesis of TSCC, and shed some light on promising strategy for TSCC therapeutics.
Collapse
Affiliation(s)
- Zhong-Heng Yang
- Department of Stomatology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Juan Li
- Department of Pathology, The Fourth Hospital of Jinan, Jinan, Shandong, China
| | - Wei-Zhi Chen
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fan-Shuang Kong
- Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
10
|
Mormile R. Metformin, MCL-1 and cancer: more players for a single goal? MINERVA ENDOCRINOL 2020; 45:74-75. [PMID: 32162507 DOI: 10.23736/s0391-1977.19.03050-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Aversa, Caserta, Italy -
| |
Collapse
|
11
|
Asghariazar V, Sakhinia E, Mansoori B, Mohammadi A, Baradaran B. Tumor suppressor microRNAs in lung cancer: An insight to signaling pathways and drug resistance. J Cell Biochem 2019; 120:19274-19289. [DOI: 10.1002/jcb.29295] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Vahid Asghariazar
- Department of Medical Genetics, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Student Research Committee Tabriz University of Medical Sciences Tabriz Iran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of Medicine Tabriz University of Medical Sciences Tabriz Iran
| | - Behzad Mansoori
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
- Aging Research Institute, Physical Medicine and Rehabilitation Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine University of Southern Denmark Odense Denmark
| | - Ali Mohammadi
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine University of Southern Denmark Odense Denmark
| | - Behzad Baradaran
- Immunology Research Center Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|