1
|
Shoieb DA, Fathalla KM, Youssef SM, Younes A. CAT-Seg: cascaded medical assistive tool integrating residual attention mechanisms and Squeeze-Net for 3D MRI biventricular segmentation. Phys Eng Sci Med 2024; 47:153-168. [PMID: 37999903 DOI: 10.1007/s13246-023-01352-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023]
Abstract
Cardiac image segmentation is a critical step in the early detection of cardiovascular disease. The segmentation of the biventricular is a prerequisite for evaluating cardiac function in cardiac magnetic resonance imaging (CMRI). In this paper, a cascaded model CAT-Seg is proposed for segmentation of 3D-CMRI volumes. CAT-Seg addresses the problem of biventricular confusion with other regions and localized the region of interest (ROI) to reduce the scope of processing. A modified DeepLabv3+ variant integrating SqueezeNet (SqueezeDeepLabv3+) is proposed as a part of CAT-Seg. SqueezeDeepLabv3+ handles the different shapes of the biventricular through the different cardiac phases, as the biventricular only accounts for small portion of the volume slices. Also, CAT-Seg presents a segmentation approach that integrates attention mechanisms into 3D Residual UNet architecture (3D-ResUNet) called 3D-ARU to improve the segmentation results of the three major structures (left ventricle (LV), Myocardium (Myo), and right ventricle (RV)). The integration of the spatial attention mechanism into ResUNet handles the fuzzy edges of the three structures. The proposed model achieves promising results in training and testing with the Automatic Cardiac Diagnosis Challenge (ACDC 2017) dataset and the external validation using MyoPs. CAT-Seg demonstrates competitive performance with state-of-the-art models. On ACDC 2017, CAT-Seg is able to segment LV, Myo, and RV with an average minimum dice symmetry coefficient (DSC) performance gap of 1.165%, 4.36%, and 3.115% respectively. The average maximum improvement in terms of DSC in segmenting LV, Myo and RV is 4.395%, 6.84% and 7.315% respectively. On MyoPs external validation, CAT-Seg outperformed the state-of-the-art in segmenting LV, Myo, and RV with an average minimum performance gap of 6.13%, 5.44%, and 2.912% respectively.
Collapse
Affiliation(s)
- Doaa A Shoieb
- Computer Engineering Department, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, 1029, Egypt.
| | - Karma M Fathalla
- Computer Engineering Department, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, 1029, Egypt
| | - Sherin M Youssef
- Computer Engineering Department, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alexandria, 1029, Egypt
| | - Ahmed Younes
- Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Li D, Peng Y, Sun J, Guo Y. A task-unified network with transformer and spatial-temporal convolution for left ventricular quantification. Sci Rep 2023; 13:13529. [PMID: 37598235 PMCID: PMC10439898 DOI: 10.1038/s41598-023-40841-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/17/2023] [Indexed: 08/21/2023] Open
Abstract
Quantification of the cardiac function is vital for diagnosing and curing the cardiovascular diseases. Left ventricular function measurement is the most commonly used measure to evaluate the function of cardiac in clinical practice, how to improve the accuracy of left ventricular quantitative assessment results has always been the subject of research by medical researchers. Although considerable efforts have been put forward to measure the left ventricle (LV) automatically using deep learning methods, the accurate quantification is yet a challenge work as a result of the changeable anatomy structure of heart in the systolic diastolic cycle. Besides, most methods used direct regression method which lacks of visual based analysis. In this work, a deep learning segmentation and regression task-unified network with transformer and spatial-temporal convolution is proposed to segment and quantify the LV simultaneously. The segmentation module leverages a U-Net like 3D Transformer model to predict the contour of three anatomy structures, while the regression module learns spatial-temporal representations from the original images and the reconstruct feature map from segmentation path to estimate the finally desired quantification metrics. Furthermore, we employ a joint task loss function to train the two module networks. Our framework is evaluated on the MICCAI 2017 Left Ventricle Full Quantification Challenge dataset. The results of experiments demonstrate the effectiveness of our framework, which achieves competitive cardiac quantification metric results and at the same time produces visualized segmentation results that are conducive to later analysis.
Collapse
Affiliation(s)
- Dapeng Li
- Shandong University of Science and Technology, Qingdao, China
| | - Yanjun Peng
- Shandong University of Science and Technology, Qingdao, China.
- Shandong Province Key Laboratory of Wisdom Mining Information Technology, Qingdao, China.
| | - Jindong Sun
- Shandong University of Science and Technology, Qingdao, China
| | - Yanfei Guo
- Shandong University of Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Jafari M, Shoeibi A, Khodatars M, Ghassemi N, Moridian P, Alizadehsani R, Khosravi A, Ling SH, Delfan N, Zhang YD, Wang SH, Gorriz JM, Alinejad-Rokny H, Acharya UR. Automated diagnosis of cardiovascular diseases from cardiac magnetic resonance imaging using deep learning models: A review. Comput Biol Med 2023; 160:106998. [PMID: 37182422 DOI: 10.1016/j.compbiomed.2023.106998] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. At early stages, CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMRI) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians as each scan has many slices of data, and the contrast of it might be low. To address these issues, deep learning (DL) techniques have been employed in the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. The following presents research to detect CVDs using CMR images and the most significant DL methods. Another section discussed the challenges in diagnosing CVDs from CMRI data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. Finally, the most important findings of this study are presented in the conclusion section.
Collapse
Affiliation(s)
- Mahboobeh Jafari
- Internship in BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Afshin Shoeibi
- Internship in BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia; Data Science and Computational Intelligence Institute, University of Granada, Spain.
| | - Marjane Khodatars
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Navid Ghassemi
- Internship in BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Parisa Moridian
- Data Science and Computational Intelligence Institute, University of Granada, Spain
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Australia
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation, Deakin University, Geelong, Australia
| | - Sai Ho Ling
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Australia
| | - Niloufar Delfan
- Faculty of Computer Engineering, Dept. of Artificial Intelligence Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Yu-Dong Zhang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
| | - Shui-Hua Wang
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
| | - Juan M Gorriz
- Data Science and Computational Intelligence Institute, University of Granada, Spain; Department of Psychiatry, University of Cambridge, UK
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia; UNSW Data Science Hub, The University of New South Wales, Sydney, NSW, 2052, Australia; Health Data Analytics Program, Centre for Applied Artificial Intelligence, Macquarie University, Sydney, 2109, Australia
| | - U Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia; Dept. of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
| |
Collapse
|
4
|
The Fusion Application of Deep Learning Biological Image Visualization Technology and Human-Computer Interaction Intelligent Robot in Dance Movements. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:2538896. [PMID: 36177314 PMCID: PMC9514919 DOI: 10.1155/2022/2538896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
The paper aims to apply the deep learning-based image visualization technology to extract, recognize, and analyze human skeleton movements and evaluate the effect of the deep learning-based human-computer interaction (HCI) system. Dance education is researched. Firstly, the Visual Geometry Group Network (VGGNet) is optimized using Convolutional Neural Network (CNN). Then, the VGGNet extracts the human skeleton movements in the OpenPose database. Secondly, the Long Short-Term Memory (LSTM) network is optimized and recognizes human skeleton movements. Finally, an HCI system for dance education is designed based on the extraction and recognition methods of human skeleton movements. Results demonstrate that the highest extraction accuracy is 96%, and the average recognition accuracy of different dance movements is stable. The effectiveness of the proposed model is verified. The recognition accuracy of the optimized F-Multiple LSTMs is increased to 88.9%, suitable for recognizing human skeleton movements. The dance education HCI system’s interactive accuracy built by deep learning-based visualization technology reaches 92%; the overall response time is distributed between 5.1 s and 5.9 s. Hence, the proposed model has excellent instantaneity. Therefore, the deep learning-based image visualization technology has enormous potential in human movement recognition, and combining deep learning and HCI plays a significant role.
Collapse
|
5
|
Automatic Left Ventricle Segmentation from Short-Axis Cardiac MRI Images Based on Fully Convolutional Neural Network. Diagnostics (Basel) 2022; 12:diagnostics12020414. [PMID: 35204504 PMCID: PMC8871002 DOI: 10.3390/diagnostics12020414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/06/2022] [Accepted: 01/16/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Left ventricle (LV) segmentation using a cardiac magnetic resonance imaging (MRI) dataset is critical for evaluating global and regional cardiac functions and diagnosing cardiovascular diseases. LV clinical metrics such as LV volume, LV mass and ejection fraction (EF) are frequently extracted based on the LV segmentation from short-axis MRI images. Manual segmentation to assess such functions is tedious and time-consuming for medical experts to diagnose cardiac pathologies. Therefore, a fully automated LV segmentation technique is required to assist medical experts in working more efficiently. Method: This paper proposes a fully convolutional network (FCN) architecture for automatic LV segmentation from short-axis MRI images. Several experiments were conducted in the training phase to compare the performance of the network and the U-Net model with various hyper-parameters, including optimization algorithms, epochs, learning rate, and mini-batch size. In addition, a class weighting method was introduced to avoid having a high imbalance of pixels in the classes of image’s labels since the number of background pixels was significantly higher than the number of LV and myocardium pixels. Furthermore, effective image conversion with pixel normalization was applied to obtain exact features representing target organs (LV and myocardium). The segmentation models were trained and tested on a public dataset, namely the evaluation of myocardial infarction from the delayed-enhancement cardiac MRI (EMIDEC) dataset. Results: The dice metric, Jaccard index, sensitivity, and specificity were used to evaluate the network’s performance, with values of 0.93, 0.87, 0.98, and 0.94, respectively. Based on the experimental results, the proposed network outperforms the standard U-Net model and is an advanced fully automated method in terms of segmentation performance. Conclusion: This proposed method is applicable in clinical practice for doctors to diagnose cardiac diseases from short-axis MRI images.
Collapse
|
6
|
Li FY, Li W, Gao X, Xiao B. A Novel Framework with Weighted Decision Map Based on Convolutional Neural Network for Cardiac MR Segmentation. IEEE J Biomed Health Inform 2021; 26:2228-2239. [PMID: 34851840 DOI: 10.1109/jbhi.2021.3131758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
For diagnosing cardiovascular disease, an accurate segmentation method is needed. There are several unre-solved issues in the complex field of cardiac magnetic resonance imaging, some of which have been partially addressed by using deep neural networks. To solve two problems of over-segmentation and under-segmentation of anatomical shapes in the short-axis view from different cardiac magnetic resonance sequences, we propose a novel two-stage framework with a weighted decision map based on convolutional neural networks to segment the myocardium (Myo), left ventricle (LV), and right ventricle (RV) simultaneously. The framework comprises a deci-sion map extractor and a cardiac segmenter. A cascaded U-Net++ is used as a decision map extractor to acquire the decision map that decides the category of each pixel. Cardiac segmenter is a multiscale dual-path feature ag-gregation network (MDFA-Net) which consists of a densely connected network and an asymmetric encoding and decoding network. The input to the cardiac seg-menter is derived from processed original images weighted by the output of the decision map extractor. We conducted experiments on two datasets of mul-ti-sequence cardiac magnetic resonance segmentation challenge 2019 (MS-CMRSeg 2019) and myocardial pa-thology segmentation challenge 2020 (MyoPS 2020). Test results obtained on MyoPS 2020 show that proposed method with average Dice coefficient of 84.70%, 86.00% and 86.31% in the segmentation task of Myo, LV, and RV, respectively.
Collapse
|
7
|
Du X, Liu Y. Constraint-based Unsupervised Domain Adaptation network for Multi-Modality Cardiac Image Segmentation. IEEE J Biomed Health Inform 2021; 26:67-78. [PMID: 34757915 DOI: 10.1109/jbhi.2021.3126874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cardiac CT and MRI images depict the various structures of the heart, which are very valuable for analyzing heart function. However, due to the difference in the shape of the cardiac images and imaging techniques, automatic segmentation is challenging. To solve this challenge, in this paper, we propose a new constraint-based unsupervised domain adaptation network. This network first performs mutual translation of images between different domains, it can provide training data for the segmentation model, and ensure domain invariance at the image level. Then, we input the target domain into the source domain segmentation model to obtain pseudo-labels and introduce cross-domain self-supervised learning between the two segmentation models. Here, a new loss function is designed to ensure the accuracy of the pseudo-labels. In addition, a cross-domain consistency loss is also introduced. Finally, we construct a multi-level aggregation segmentation network to obtain more refined target domain information. We validate our method on the public whole heart image segmentation challenge dataset and obtain experimental results of 82.9% and 5.5 on dice and average symmetric surface distance (ASSD), respectively. These experimental results prove that our method can provide important assistance in the clinical evaluation of unannotated cardiac datasets.
Collapse
|
8
|
Du X, Xu X, Liu H, Li S. TSU-net: Two-stage multi-scale cascade and multi-field fusion U-net for right ventricular segmentation. Comput Med Imaging Graph 2021; 93:101971. [PMID: 34482121 DOI: 10.1016/j.compmedimag.2021.101971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 07/12/2021] [Accepted: 08/06/2021] [Indexed: 01/21/2023]
Abstract
Accurate segmentation of the right ventricle from cardiac magnetic resonance images (MRI) is a critical step in cardiac function analysis and disease diagnosis. It is still an open problem due to some difficulties, such as a large variety of object sizes and ill-defined borders. In this paper, we present a TSU-net network that grips deeper features and captures targets of different sizes with multi-scale cascade and multi-field fusion in the right ventricle. TSU-net mainly contains two major components: Dilated-Convolution Block (DB) and Multi-Layer-Pool Block (MB). DB extracts and aggregates multi-scale features for the right ventricle. MB mainly relies on multiple effective field-of-views to detect objects at different sizes and fill boundary features. Different from previous networks, we used DB and MB to replace the convolution layer in the encoding layer, thus, we can gather multi-scale information of right ventricle, detect different size targets and fill boundary information in each encoding layer. In addition, in the decoding layer, we used DB to replace the convolution layer, so that we can aggregate the multi-scale features of the right ventricle in each decoding layer. Furthermore, the two-stage U-net structure is used to further improve the utilization of DB and MB through a two-layer encoding/decoding layer. Our method is validated on the RVSC, a public right ventricular data set. The results demonstrated that TSU-net achieved an average Dice coefficient of 0.86 on endocardium and 0.90 on the epicardium, thereby outperforming other models. It effectively assists doctors to diagnose the disease and promotes the development of medical images. In addition, we also provide an intuitive explanation of our network, which fully explain MB and TSU-net's ability to detect targets of different sizes and fill in boundary features.
Collapse
Affiliation(s)
- Xiuquan Du
- Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University, Hefei, Anhui, China; School of Computer Science and Technology, Anhui University, Hefei, Anhui, China.
| | - Xiaofei Xu
- School of Computer Science and Technology, Anhui University, Hefei, Anhui, China
| | - Heng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Shuo Li
- Department of Medical Imaging, Western University, London, ON, Canada
| |
Collapse
|
9
|
Tian Y, Fu S. A descriptive framework for the field of deep learning applications in medical images. Knowl Based Syst 2020. [DOI: 10.1016/j.knosys.2020.106445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|