Lin W, He Y, Hu G, Zhang C. Multi-Strategy-Assisted Hybrid Crayfish-Inspired Optimization Algorithm for Solving Real-World Problems.
Biomimetics (Basel) 2025;
10:343. [PMID:
40422173 DOI:
10.3390/biomimetics10050343]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 05/28/2025] Open
Abstract
In order to solve problems with the original crayfish optimization algorithm (COA), such as reduced diversity, local optimization, and insufficient convergence accuracy, a multi-strategy optimization algorithm for crayfish based on differential evolution, named the ICOA, is proposed. First, the elite chaotic difference strategy is used for population initialization to generate a more uniform crayfish population and increase the quality and diversity of the population. Secondly, the differential evolution strategy and the dimensional variation strategy are introduced to improve the quality of the crayfish population before its iteration and to improve the accuracy of the optimal solution and the local search ability for crayfish at the same time. To enhance the updating approach to crayfish exploration, the Levy flight strategy is adopted. This strategy aims to improve the algorithm's search range and local search capability, prevent premature convergence, and enhance population stability. Finally, the adaptive parameter strategy is introduced to improve the development stage of crayfish, so as to better balance the global search and local mining ability of the algorithm, and to further enhance the optimization ability of the algorithm, and the ability to jump out of the local optimal. In addition, a comparison with the original COA and two sets of optimization algorithms on the CEC2019, CEC2020, and CEC2022 test sets was verified by Wilcoxon rank sum test. The results show that the proposed ICOA has strong competition. At the same time, the performance of ICOA is tested against different high-performance algorithms on 6 engineering optimization examples, 30 high-low-dimension constraint problems and 2 large-scale NP problems. Numerical experiments results show that ICOA has superior performance on a range of engineering problems and exhibits excellent performance in solving complex optimization problems.
Collapse