1
|
Nathani P, Sharma P. Role of Artificial Intelligence in the Detection and Management of Premalignant and Malignant Lesions of the Esophagus and Stomach. Gastrointest Endosc Clin N Am 2025; 35:319-353. [PMID: 40021232 DOI: 10.1016/j.giec.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The advent of artificial intelligence (AI) and deep learning algorithms, particularly convolutional neural networks, promises to address pitfalls, bridging the care for patients at high risk with improved detection (computer-aided detection [CADe]) and characterization (computer-aided diagnosis [CADx]) of lesions. This review describes the available artificial intelligence (AI) technology and the current data on AI tools for screening esophageal squamous cell cancer, Barret's esophagus-related neoplasia, and gastric cancer. These tools outperformed endoscopists in many situations. Recent randomized controlled trials have demonstrated the successful application of AI tools in clinical practice with improved outcomes.
Collapse
Affiliation(s)
- Piyush Nathani
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA.
| | - Prateek Sharma
- Department of Gastroenterology, University of Kansas School of Medicine, Kansas City, KS, USA; Kansas City Veteran Affairs Medical Center, Kansas City, MO, USA
| |
Collapse
|
2
|
Lai Q, Vong CM, Yan T, Wong PK, Liang X. Hybrid multiple instance learning network for weakly supervised medical image classification and localization. EXPERT SYSTEMS WITH APPLICATIONS 2025; 260:125362. [DOI: 10.1016/j.eswa.2024.125362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Pornvoraphat P, Tiankanon K, Pittayanon R, Nupairoj N, Vateekul P, Rerknimitr R. Real-time gastric intestinal metaplasia segmentation using a deep neural network designed for multiple imaging modes on high-resolution images. Knowl Based Syst 2024; 300:112213. [DOI: 10.1016/j.knosys.2024.112213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Matsubayashi CO, Cheng S, Hulchafo I, Zhang Y, Tada T, Buxbaum JL, Ochiai K. Artificial intelligence for gastric cancer in endoscopy: From diagnostic reasoning to market. Dig Liver Dis 2024; 56:1156-1163. [PMID: 38763796 DOI: 10.1016/j.dld.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/21/2024]
Abstract
Recognition of gastric conditions during endoscopy exams, including gastric cancer, usually requires specialized training and a long learning curve. Besides that, the interobserver variability is frequently high due to the different morphological characteristics of the lesions and grades of mucosal inflammation. In this sense, artificial intelligence tools based on deep learning models have been developed to support physicians to detect, classify, and predict gastric lesions more efficiently. Even though a growing number of studies exists in the literature, there are multiple challenges to bring a model to practice in this field, such as the need for more robust validation studies and regulatory hurdles. Therefore, the aim of this review is to provide a comprehensive assessment of the current use of artificial intelligence applied to endoscopic imaging to evaluate gastric precancerous and cancerous lesions and the barriers to widespread implementation of this technology in clinical routine.
Collapse
Affiliation(s)
- Carolina Ogawa Matsubayashi
- Endoscopy Unit, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, University of São Paulo, São Paulo, Brasil; AI Medical Service Inc., Tokyo, Japan.
| | - Shuyan Cheng
- Department of Population Health Science, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ismael Hulchafo
- Columbia University School of Nursing, New York, NY 10032, USA
| | - Yifan Zhang
- Department of Population Health Science, Weill Cornell Medical College, New York, NY 10065, USA
| | - Tomohiro Tada
- AI Medical Service Inc., Tokyo, Japan; Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - James L Buxbaum
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Kentaro Ochiai
- Department of Surgical Oncology, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Colon and Rectal Surgery, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
5
|
Li N, Yang J, Li X, Shi Y, Wang K. Accuracy of artificial intelligence-assisted endoscopy in the diagnosis of gastric intestinal metaplasia: A systematic review and meta-analysis. PLoS One 2024; 19:e0303421. [PMID: 38743709 PMCID: PMC11093381 DOI: 10.1371/journal.pone.0303421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND AND AIMS Gastric intestinal metaplasia is a precancerous disease, and a timely diagnosis is essential to delay or halt cancer progression. Artificial intelligence (AI) has found widespread application in the field of disease diagnosis. This study aimed to conduct a comprehensive evaluation of AI's diagnostic accuracy in detecting gastric intestinal metaplasia in endoscopy, compare it to endoscopists' ability, and explore the main factors affecting AI's performance. METHODS The study followed the PRISMA-DTA guidelines, and the PubMed, Embase, Web of Science, Cochrane, and IEEE Xplore databases were searched to include relevant studies published by October 2023. We extracted the key features and experimental data of each study and combined the sensitivity and specificity metrics by meta-analysis. We then compared the diagnostic ability of the AI versus the endoscopists using the same test data. RESULTS Twelve studies with 11,173 patients were included, demonstrating AI models' efficacy in diagnosing gastric intestinal metaplasia. The meta-analysis yielded a pooled sensitivity of 94% (95% confidence interval: 0.92-0.96) and specificity of 93% (95% confidence interval: 0.89-0.95). The combined area under the receiver operating characteristics curve was 0.97. The results of meta-regression and subgroup analysis showed that factors such as study design, endoscopy type, number of training images, and algorithm had a significant effect on the diagnostic performance of AI. The AI exhibited a higher diagnostic capacity than endoscopists (sensitivity: 95% vs. 79%). CONCLUSIONS AI-aided diagnosis of gastric intestinal metaplasia using endoscopy showed high performance and clinical diagnostic value. However, further prospective studies are required to validate these findings.
Collapse
Affiliation(s)
- Na Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China
| | - Jian Yang
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China
| | - Xiaodong Li
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China
| | - Yanting Shi
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China
| | - Kunhong Wang
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
6
|
Diao Z, Jiang H. A multi-instance tumor subtype classification method for small PET datasets using RA-DL attention module guided deep feature extraction with radiomics features. Comput Biol Med 2024; 174:108461. [PMID: 38626509 DOI: 10.1016/j.compbiomed.2024.108461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/21/2024] [Accepted: 04/07/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Positron emission tomography (PET) is extensively employed for diagnosing and staging various tumors, including liver cancer, lung cancer, and lymphoma. Accurate subtype classification of tumors plays a crucial role in formulating effective treatment plans for patients. Notably, lymphoma comprises subtypes like diffuse large B-cell lymphoma and Hodgkin's lymphoma, while lung cancer encompasses adenocarcinoma, small cell carcinoma, and squamous cell carcinoma. Similarly, liver cancer consists of subtypes such as cholangiocarcinoma and hepatocellular carcinoma. Consequently, the subtype classification of tumors based on PET images holds immense clinical significance. However, in clinical practice, the number of cases available for each subtype is often limited and imbalanced. Therefore, the primary challenge lies in achieving precise subtype classification using a small dataset. METHOD This paper presents a novel approach for tumor subtype classification in small datasets using RA-DL (Radiomics-DeepLearning) attention. To address the limited sample size, Support Vector Machines (SVM) is employed as the classifier for tumor subtypes instead of deep learning methods. Emphasizing the importance of texture information in tumor subtype recognition, radiomics features are extracted from the tumor regions during the feature extraction stage. These features are compressed using an autoencoder to reduce redundancy. In addition to radiomics features, deep features are also extracted from the tumors to leverage the feature extraction capabilities of deep learning. In contrast to existing methods, our proposed approach utilizes the RA-DL-Attention mechanism to guide the deep network in extracting complementary deep features that enhance the expressive capacity of the final features while minimizing redundancy. To address the challenges of limited and imbalanced data, our method avoids using classification labels during deep feature extraction and instead incorporates 2D Region of Interest (ROI) segmentation and image reconstruction as auxiliary tasks. Subsequently, all lesion features of a single patient are aggregated into a feature vector using a multi-instance aggregation layer. RESULT Validation experiments were conducted on three PET datasets, specifically the liver cancer dataset, lung cancer dataset, and lymphoma dataset. In the context of lung cancer, our proposed method achieved impressive performance with Area Under Curve (AUC) values of 0.82, 0.84, and 0.83 for the three-classification task. For the binary classification task of lymphoma, our method demonstrated notable results with AUC values of 0.95 and 0.75. Moreover, in the binary classification task of liver tumor, our method exhibited promising performance with AUC values of 0.84 and 0.86. CONCLUSION The experimental results clearly indicate that our proposed method outperforms alternative approaches significantly. Through the extraction of complementary radiomics features and deep features, our method achieves a substantial improvement in tumor subtype classification performance using small PET datasets.
Collapse
Affiliation(s)
- Zhaoshuo Diao
- Software College, Northeastern University, Shenyang 110819, China
| | - Huiyan Jiang
- Software College, Northeastern University, Shenyang 110819, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang 110819, China.
| |
Collapse
|
7
|
Pornvoraphat P, Tiankanon K, Pittayanon R, Sunthornwetchapong P, Vateekul P, Rerknimitr R. Real-time gastric intestinal metaplasia diagnosis tailored for bias and noisy-labeled data with multiple endoscopic imaging. Comput Biol Med 2023; 154:106582. [PMID: 36738708 DOI: 10.1016/j.compbiomed.2023.106582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
This work presents real-time segmentation viz. gastric intestinal metaplasia (GIM). Recently, GIM segmentation of endoscopic images has been carried out to differentiate GIM from a healthy stomach. However, real-time detection is difficult to achieve. Conditions are challenging, and include multiple color modes (white light endoscopy and narrow-band imaging), other abnormal lesions (erosion and ulcer), noisy labels etc. Herein, our model is based on BiSeNet and can overcome the many issues regarding GIM. Application of auxiliary head and additional loss are seen to improve performance as well as enhance multiple color modes accurately. Further, multiple pre-processing techniques are utilized for leveraging detection performance: namely, location-wise negative sampling, jigsaw augmentation, and label smoothing. Finally, the decision threshold can be adjusted separately for each color mode. Work undertaken at King Chulalongkorn Memorial Hospital examined 940 histologically proven GIM images and 1239 non-GIM images, obtained over 173 frames per second (FPS). In terms of accuracy, our model is seen to outperform all baselines. Our results demonstrate sensitivity, specificity, positive predictive, negative predictive, accuracy, and mean intersection over union (IoU), achieving GIM segmentation values of 91%, 96%, 91%, 91%, 96%, and 55%, respectively.
Collapse
Affiliation(s)
- Passin Pornvoraphat
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Kasenee Tiankanon
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Rapat Pittayanon
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Phanukorn Sunthornwetchapong
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Peerapon Vateekul
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok, Thailand.
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
| |
Collapse
|